2011届高考数学百题精炼系列9(文理合卷)_第1页
2011届高考数学百题精炼系列9(文理合卷)_第2页
2011届高考数学百题精炼系列9(文理合卷)_第3页
2011届高考数学百题精炼系列9(文理合卷)_第4页
2011届高考数学百题精炼系列9(文理合卷)_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

用心 爱心 专心1 20112011 届高考数学百题精炼系列届高考数学百题精炼系列 9 9 一 选择题 每小题仅有一个选项符合题意 共 5 12 60 分 2 奇函数在上的解析式是 则在上的函 f x 0 1 f xxx 0 f x 数解析式是 A B 1 f xxx 1 f xxx C D 1 f xxx 1 f xx x 答案 B 分析 把的函数解析式通过函数是奇函数的性质转化到使用函数在 0 x f x 上的解析式 0 解析 当时 由于函数是奇函数 故 0 x 0 x f x 1 f xfxxx 考点 基本初等函数 点评 已知函数的奇偶性和函数在一个区间上的解析式求这个函数在其关于坐标原点对 用心 爱心 专心2 称的区间上的函数解析式 就是根据函数的奇偶性进行转化的 这类试题重点考查化归转 化思想是运用 3 抛物线上一点到直线的距离最短 则该点的坐标是 2 4xy 54 xy A B C D 2 1 0 0 1 2 1 4 1 答案 C 分析 根据题意 直线必然与抛物线相离 抛物线上的点到直线的 54 xy 2 4yx 最短距离就是与直线平行的抛物线的切线的切点 54 xy 解析 由得 故抛物线的斜率为的切线的切点坐标是 8yx 84x 1 2 x 4 1 1 2 该点到直线的距离是最短 45yx 考点 导数及其应用 点评 本题以数形结合思想为指导命制 通过形的分析把问题转化为求抛物线的斜率为 的切线的切点坐标 本题也可以直接根据点到直线的距离公式求解 即抛物线上的点到 4 直线的距离是 显然这个函数 45yx 2 2 1 4 4 445 45 2 171717 x xx xy d 当时取得最小值 此时 1 2 x 1y 4 已知三棱锥底面是边长为的等边三角形 侧棱长均为 则侧棱与底面所成角的余弦12 值为 A B C D 3 2 1 2 3 3 3 6 答案 D 分析 由于是三棱锥 故顶点在底面上的射影是底面正三角形的中心 底面的一个顶点 到这个中心的距离是 侧棱与底面所成角的余弦值就是这个数值除以侧棱长 233 323 解析 根据分析 所求的余弦值是 3 3 3 26 用心 爱心 专心3 分析 根据基本不等式 只要根据双曲线的离心率是 求出的值即可 2 12 33 bb aa 2 b a 解析 由于已知双曲线的离心率是 故 解得 2 2 22 2 21 cabb aaa 所以的最小值是 3 b a 2 1 3 b a 2 3 3 考点 圆锥曲线与方程 点评 双曲线的离心率和渐近线的斜率之间有关系 22 22 1 0 0 xy ab ab e b a 从这个关系可以得出双曲线的离心率越大 双曲线的开口越大 2 2 1 b e a 6 极坐标方程表示的图形是 2 0 0 3 A 两个圆 B 两条直线 C 一个圆和一条射线 D 一条直线和一条射线 答案 C 分析 可以得到两个方程 根据这两个极坐标系方程判断其 2 0 0 3 表示的图形 用心 爱心 专心4 分析 根据中三个内角那个是直角进行分类讨论 数形结合 根据椭圆是对称 12 FPF 性进行分析判断 解析 当为直角时 根据椭圆的对称性 这样的点有两个 同理当为直角时 1 F P 2 F 这样的点有两个 由于椭圆的短轴端点与两个焦点所张的角最大 这里这个角恰好是直 P 角 这时这样的点也有两个 故符合要求的点有六个 PP 考点 圆锥曲线与方程 点评 本题中当椭圆短轴的端点与两焦点的张角小于时 为直角的情况不存在 90 P 此时等价于椭圆的离心率小于 当椭圆短轴的端点与两焦点的张角等于时 符合 2 290 要求的点有两个 即短轴的两个端点 此时等价于椭圆的离心率等于 当当椭圆短 P 2 2 轴的端点与两焦点的张角大于时 根据椭圆关于轴对称这个的点有两个 再根据 90 y P 椭圆关于轴对称 可得这样的点共有四个 xP 用心 爱心 专心5 9 已知 且 则的最小值为 10 10 1 xy xy y 22 448uxyxy u A B C D 3 2 2 9 2 2 2 1 2 答案 B 分析 求解目标 其几何意义是坐标平面 2222 448 2 2 uxyxyxy 内的点到点的距离的平方 而点在平面区域内 画出区域 P x y 2 2 P 10 10 1 xy xy y 分析图形之间的关系即可 解析 不等式组所表示的平面区域是如图中的 根据题意只能是点到直线 ABC 2 2 用心 爱心 专心6 的距离最小 这个最小值是 故所求的最小值是 10 xy 3 2 9 2 考点 不等式 点评 本题考查二元一次不等式组所表示的平面区域 而二元函数的几何意义和数形结 合思想 这类问题解题的关键是在数形结合思想指导下 二元函数几何意义的运用 本题 中点能保证是在图中的圆与直线的切点处是问题的最优解 但如果目标 2 2 10 xy 函数是 则此时的最优解就不是直线与圆的切点 而是区域的定点 22 44uxyy C 10 若两个等差数列和的前项和分别是和 已知 则 n a n bn n S n T 7 3 n n Sn Tn 5 5 a b A B C D 7 2 3 27 8 21 4 答案 D 分析 根据等差数列的性质 把转化为 5 5 a b 9 9 S T 解析 19 55199 19 55199 9 221 2 2 24 2 aa aaaaS bb bbbbT 考点 数列 点评 如果两个等差数列和的前项和分别是和 仿照本题解析的方法 n a n b nn S n T 一定有关系式 nn nn aS bT 11 已知 则与夹角的取值 2 0 2 2 2cos 2sin OBOCCA OA OB 用心 爱心 专心7 范围是 A B C D 12 3 5 4 12 5 12 12 5 122 答案 C 分析 这是一个变动的向量 其终点轨 22cos 22sin OAOCCA 迹的参数方程是其中是参数 这个方程是圆的参数方程 而向量 22cos 22sin x y 是轴的一个方向向量 求解的问题就转化为求与轴的正半轴所成的角的范围 OB y OA y 通过数形结合求解 解析 设 则 22cos 22sin OAOCCA A x y 其中是参数 化为普通方程即 这是一个以 22cos 22sin x y 22 2 2 2xy 点为圆心 为半径的圆 作出图象如图 从图中可知两向量夹角的取值 2 2 2 OA OB 范围是 5 12 12 考点 平面向量 点评 本题考查平面向量 但解答试题不是单独依靠平面向量的知识所能解决的 其中 涉及到圆的参数方程 直线与圆的位置关系 最重要的是得具备这种在不同学科知识之间 进行相互转化的思想意识 这才是本题考查的核心所在 12 已知是椭圆上一点 两焦点为 点是M 0 1 2 2 2 2 ba b y a x 12 F FP 的内心 连接并延长交于 则的值为 12 MF F MP 21F FN PN MP A B C D 22 ba a 22 ba b 22 ab b 22 ab a 用心 爱心 专心8 答案 A 分析 由于三角形是内心是三个内角的平分线的交点 使用三角形内角平分线性质定理 把所求的比值转化为三角形边长之间的比值关系 解析 如图 连结 在中 是的角平分线 根据三角形 12 PF PF 1 MFP 1 FP 1 MFN 内角平分线性质定理 同理可得 固有 1 1 MPMF PNFN 2 2 MPMF PNF N 根据等比定理 12 12 MPMFMF PNFNF N 12 2222 12 2 2 MPMFMFaa PNFNF N abab 考点 圆锥曲线与方程 点评 本题考查主要圆锥曲线的定义的应用 试题在平面几何中的三角形内角平分线性 质定理 初中代数中的等比定理和圆锥曲线的定义之间进行了充分的交汇 在解决涉及到 圆锥曲线上的点与焦点之间的关系的问题中 圆锥曲线的定义往往是解题的突破口 卷 非选择题 本卷共 10 小题 共 90 分 二 填空题 每 小题 5 分 共 5 4 20 分 13 若 为虚数单位 则 2 1 abi i iRba ba 答案 2 用心 爱心 专心9 答案 9 4 分析 根据抛物线的定义 把焦点弦转化为点到准线的距离 解析 设 焦点 准线方程 根据抛物线的定义 1122 A x yB xy 1 0 4 F 1 4 x 所以 所以 即中点 12 11 44 AFxBFx 12 1 4 2 ABxx 12 7 24 xx AB 的横坐标是 所以中点到直线的距离是 7 4AB 1 0 2 x 719 424 考点 圆锥曲线与方程 点评 本题主要考查抛物线的定义在解决问题中的应用 如果是过抛物线 AB 焦点的弦 则 2 2 0 ypxp 1122 A x yB xy 12 ABxxp 15 若是直角三角形的三边的长 为斜边 则圆被直线cba ABC c4 22 yxC 所截得的弦长为 0 cbyaxl 答案 2 3 分析 根据圆的弦长 弦心距 半径之间的关系可得弦长的计算公式 再根据是 a b c 直角三角形的三边进行化简 解析 圆被直线所截得的弦长 4 22 yxC0 cbyaxl 用心 爱心 专心10 由于 所以 2 22 22 22 4 c lrd ab 222 abc 2 3l 考点 圆与方程 点评 如果圆的半径是 圆心到直线的距离是 在圆被直线所截得的弦长 rd 这个公式是根据平面几何中直线与圆的位置关系和勾股定理得到的 在解 22 2lrd 决直线与圆的位置关系时要充分考虑平面几何知识的运用 16 设是公比为的等比数列 其前项积为 并满足条件 n aqn n T 给出下列结论 0 1 1 0 1 1 100 99 100991 a a aaa 1 2 3 4 使成立的最小自然数10 q1 198 T1 10199 aa1 n T 等于 其中正确的编号为 n199 答案 1 3 4 分析 首先判断数列的单调性 然后再根据等比数列的性质进行分析判断 解析 根据等比数列的性质 如果等比数列的公比是负值 在其连续两项的乘积是负值 根据 可知该等比数列的公比是正值 再根据可知 一 99100 10a a 99 100 1 0 1 a a 99100 aa 个大于 一个小于 而 所以数列不会是单调递增的 只能单调递减 所以 11 1 1a 而且 又 1 3 正确 01q 99100 1 1aa 2 99101100 1a aa 2 不正确 99 198129910019719899100 1Ta aa aaaa a 故 4 正确 199 19912100198199100 1Ta aaaaa 考点 数列 点评 本题设置开放性的结论 综合考查等比数列的性质以及分析问题的能力 试题比 较符合高考命题的趋势 在等比数列中最主要的性质之一就是 mnpq aaaamnpqm n p q N 三 解答题 本大题有 6 道小题 其中 17 题 10 分 其余各题 12 分 共 70 分 用心 爱心 专心11 解析 1 由正弦定理知 2 分 xAC x AC sin4 60sin 32 sin 4 分 3 2 sin 4 60sin 32 3 2 sin xAB x AB 6 32 6 sin 3432 3 2 sin 4sin4 xxxy 3 2 0 x 分 2 即时 10 分 26 6 5 66 xx 3 x 36 max y 考点 基本初等函数 解三角形 点评 本题综合考查了正弦定理 三角恒等变换 三角函数的性质 这也是高考中三角 函数解答题的一个常规考查方式 值得注意的是虽然高考降低了对三角恒等变换的考查 但在解决三角函数性质的试题中三角恒等变换往往是解题的工具 在复习三角函数时一定 不要忽视了三角恒等变换 18 12 分 已知直线 的参数方程为 为参数 若以直角坐标系l ty tx 2 3 2 2 2 1 t 的点为极点 方向为极轴 选择相同的长度单位建立极坐标系 得曲线的xOyOOxC 极坐标方程为 4 cos 2 用心 爱心 专心12 1 求直线 的倾斜角 l 2 若直线 与曲线交于两点 求 lCBA AB 分析 1 根据直线参数方程中的意义或者把直线方程化为普通方程均可 2 根据曲 线的极坐标方程可知曲线是圆 根据圆被直线所截得的弦长公式极限计算 C 解析 1 直线参数方程可以化 根据直线参数方程的意义 这条 cos60 2 sin60 2 xt yt 经过点 倾斜角为的直线 6 分 2 0 260 2 的直角坐标方程为 l2 2 3 xy 的直角坐标方程为 9 分 4 cos 2 1 2 2 2 2 22 yx 所以圆心到直线 的距离 12 分 2 2 2 2 l4 6 d 2 10 AB 考点 坐标系与参数方程 点评 本题综合考查直线的参数方程 圆的极坐标方程 这两个方程是坐标系与参数方 程中的重点 经过点 倾斜角为的直线的参数方程是其中 000 P xy 0 0 cos sin xxt yyt 为参数 直线上的点处的参数 的几何意义是有限线段的数量 tPt0 P P 19 12 分 椭圆的中心在坐标原点 焦点在轴上 该椭圆经过点且离心率Cx 2 3 1P 为 2 1 1 求椭圆的标准方程 C 2 若直线与椭圆相交两点 不是左右顶点 且以为直mkxyl CBA BA AB 径的圆过椭圆的右顶点 求证 直线 过定点 并求出该定点的坐标 Cl 分析 1 根据椭圆的方程和简单几何性质 使用待定系数法即可 2 要证明直线系 过定点 就要找到其中的参数之间的关系 把双参数化为但参数问题解决 ykxm k m 这只要根据直线与椭圆相交两点 不是左右顶点 且以为 mkxyl C A B A B AB 直径的圆过椭圆的右顶点即可 这个问题等价于椭圆的右顶点与的张角是直角 C A B 用心 爱心 专心13 解析 1 椭圆的标准方程为 4 分 1 34 22 yx 2 设 得 2211 yxByxA 1 34 22 yx mkxy 0348243 22 mkmxxk 043 0 22 mk 6 分 2 2 21221 43 34 43 8 k m xx k mk xx 2 22 21 43 43 k km yy 以为直径的圆过椭圆的右顶点 ABC 1 BDAD kk 042 212121 xxxxyy 04167 22 kmkm 且均满足 9 分 km2 1 7 2 2 m 043 22 mk 当时 的方程为 则直线过定点与已知矛盾 km2 1 l 2 xky 0 2 当时 的方程为 则直线过定点 km 7 2 1 l 7 2 xky 0 7 2 直线 过定点 定点坐标为 12 分 l 0 7 2 考点 圆锥曲线与方程 点评 直线系过定点时 必需是直线系中的参数为但参数 对于含有双参数的直线系 就要找到两个参数之间的关系把直线系方程化为单参数的方程 然后把当作参数的系 x y 数把这个方程进行整理 使这个方程关于参数无关的成立的条件就是一个关于的方程 x y 组 以这个方程的解为坐标的点就是直线系过的定点 20 12 分 如图 三棱柱中 侧棱平面 为等 111 CBAABC 1 AA ABCABC 腰直角三角形 且 分别是的中点 90 BAC 1 AAAB FED BCCCAB 11 1 求证 平面 DEABC 2 求证 平面 FB1AEF 用心 爱心 专心14 3 求二面角的正切值 F D E C1 B1 A1 C B A FAEB 1 分析 1 根据中点寻找平行线即可 2 易证 在根据勾股定理的逆定理 1 AFB F 证明 3 根据 2 的证明点就是点在平面的射影 只要过点 1 B FEF F 1 B AEF 作的垂线或者过点作的垂线 即可作出二面角的平面角 FAE 1 B AE 解析 1 取中点 连接 ABO DOCO 平行四边形 2 1 11 CEDOCEDOAADOAADO DOCE 平面 平面 平面 4 分 DECODE ABC COABC DE ABC 2 等腰直角三角形中为斜边的中点 ABC FBCAF 又直三棱柱 面面 111 CBAABC ABC CCBB 11 面 AF BC1FBAF 1 设 EFFBEBEFFBEBEFFBAAAB 1 2 1 22 1111 2 3 2 3 2 6 1 又面 8 分 FEFAF FB1 AEF 3 面 作于 连接 为所求 FB1 AEF AEMB 1MFM MFB1 所求二面的正切值为 12 分 10 3 FM 5 用心 爱心 专心15 考点 空间点 线 面位置关系 点评 立体几何中的中点与中点之间可以产生平行线 当问题涉及到中点时可以通过再 找其中的中点作出辅助线 垂直关系的证明 关键是线线垂直的证明 基本方法是通过线 面垂直证明线线垂直 计算证明线线垂直 二面角的求解 综合几何方法的关键是作出其 平面角 一个重要而根本的方法就是 射影法 这个方法是在二面角的一个半平面内找一 个特殊的点 作令一个半平面的垂线 垂足为 再过点作二面角棱的垂线 垂足为 ABB 连结 则就是所求二面角的平面角 并且这个角是一个直角三角形的内 CACACB 角 如果二面角是钝二面角 则可以用这个方法作出其平面角的补角 21 12 分 已知抛物线 其焦点到准线的距离为 0 2 2 ppyxCF 2 1 1 试求抛物线的方程 C 2 设抛物线上一点的横坐标为 过的直线交于另 一点 交轴CP 0 ttPCQx 于 过点作的垂线交于另一点 若是的切线 求 的最小值 MQPQCNMNCt 分析 1 根据抛物线的准线方程确定值即可 2 由于是抛物线上的点 可以使 p 用点参数表示各个点的坐标 可以设 求出过点的抛物线的 222 00 P t tQ x xN x x N 切线方程 即可用表示点的坐标 再根据三点共线即可把用表达 0 x M P Q M 0 x x t 最后根据即可建立之间的一个方程 从而是变量表示 通过函数的方法 PQQM x t xt 求出 的取值范围 t 用心 爱心 专心16 由 1 2 得 或 舍 2 2 21 22 t txt 0 2 t tx xt x x t 3 1 2 3 2 t 3 2 t 所求 的最小值为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论