




免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
3. 1.2空间向量及其运算(2)教学目标:1理解共线向量定理和共面向量定理及它们的推论;2掌握空间直线、空间平面的向量参数方程和线段中点的向量公式教学重、难点:共线、共面定理及其应用教学过程:(一)复习:空间向量的概念及表示;(二)新课讲解:1共线(平行)向量:如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量。读作:平行于,记作:2共线向量定理:对空间任意两个向量的充要条件是存在实数,使(唯一)推论:如果为经过已知点,且平行于已知向量的直线,那么对任一点,点在直线上的充要条件是存在实数,满足等式,其中向量叫做直线的方向向量。在上取,则式可化为或当时,点是线段的中点,此时和都叫空间直线的向量参数方程,是线段的中点公式3向量与平面平行:已知平面和向量,作,如果直线平行于或在内,那么我们说向量平行于平面,记作:通常我们把平行于同一平面的向量,叫做共面向量说明:空间任意的两向量都是共面的4共面向量定理:如果两个向量不共线,与向量共面的充要条件是存在实数使推论:空间一点位于平面内的充分必要条件是存在有序实数对,使或对空间任一点,有上面式叫做平面的向量表达式(三)例题分析:例1已知三点不共线,对平面外任一点,满足条件,试判断:点与是否一定共面?解:由题意:,即,所以,点与共面说明:在用共面向量定理及其推论的充要条件进行向量共面判断的时候,首先要选择恰当的充要条件形式,然后对照形式将已知条件进行转化运算【练习】:对空间任一点和不共线的三点,问满足向量式 (其中)的四点是否共面?解:,点与点共面例2已知,从平面外一点引向量,(1)求证:四点共面;(2)平面平面解:(1)四边形是平行四边形,共面;(2),又,所以,平面平面课堂练习:课堂小结:1共线向量定理和共面向量定理及其推论;2空间直线、平面的向量参数方程和线段中点向量公式作业:1已知两个非零向量不共线,如果,求证:共面2已知,若,求实数的值。3如图,分别为正方体的棱的中点,求证:(1)四点共面;(2)平面平面4已知分别是空间四边形边的中点,(1)用向量法证明:四点共面;(2)用向量法证明:平面3.1.2空间向量及其运算(2)课前预习学案预习目标:1.理解共线向量定理和共面向量定理及它们的推论;2掌握空间直线、空间平面的向量参数方程和线段中点的向量公式预习内容: 怎样的向量叫做共线向量?两个向量共线的充要条件是什么?空间中点在直线上的充要条件是什么?什么叫做空间直线的向量参数表示式?怎样的向量叫做共面向量?向量p与不共线向量a、b共面的充要条件是什么?空间一点P在平面MAB内的充要条件是什么?提出疑惑:同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中疑惑点疑惑内容课内探究学案学习目标:1理解共线向量定理和共面向量定理及它们的推论;2掌握空间直线、空间平面的向量参数方程和线段中点的向量公式学习重、难点:共线、共面定理及其应用学习过程:例1已知三点不共线,对平面外任一点,满足条件,试判断:点与是否一定共面?【练习】:对空间任一点和不共线的三点,问满足向量式 (其中)的四点是否共面? 例2已知,从平面外一点引向量,(1)求证:四点共面;(2)平面平面当堂检测:1、如图中,已知空间四边形OABC,其对角线为OB,AC,M,N分别是对边OA,BC的中点,点G在线段MN上,且分所成的定比为2,现用基向量()ABCD2下列命题正确的是( )若与共线,与共线,则与共线;向量共面就是它们所在的直线共面;零向量没有确定的方向; 若,则存在唯一的实数使得;3已知A、B、C三点不共线,O是平面ABC外的任一点,下列条件中能确定点M与点A、B、C一定共面的是 ( ) 4已知两个非零向量不共线,如果,求证:共面课堂练习与提高:1已知,若,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 美术设计的鞋履创新与表现
- 2025年事业单位工勤技能-湖南-湖南收银员五级(初级工)历年参考题库典型考点含答案解析
- 元宇宙社交平台虚拟现实社交体验优化研究报告
- 2025年事业单位工勤技能-湖北-湖北农机驾驶维修工五级(初级工)历年参考题库含答案解析
- 2025年事业单位工勤技能-湖北-湖北中式面点师四级(中级工)历年参考题库典型考点含答案解析
- 2025年事业单位工勤技能-海南-海南防疫员四级(中级工)历年参考题库含答案解析
- 2025-2030中国粘钩行业销售动态及需求预测报告
- 2025年事业单位工勤技能-河南-河南护理员二级(技师)历年参考题库典型考点含答案解析
- 2024版生态修复施工合同
- 2024版钢结构建筑消防设施施工合同范本
- 吉安市新庐陵投资发展有限公司及下属子公司2025年第二批面向社会公开招聘笔试备考题库及答案解析
- 2025至2030年中国生长激素行业市场深度研究及投资战略规划报告
- 大疆:2025大疆机场3操作指导书
- 2025年12345热线考试题库
- 2025年卫生健康行业经济管理领军人才试题
- 绿色矿山培训课件
- hiv职业暴露培训课件
- 2025年重庆市高考物理试卷(含答案解析)
- 小番茄栽培技术课件
- 女职工普法宣传教学课件
- (高清版)DB22∕T 5159-2024 预应力混凝土桩基础技术标准
评论
0/150
提交评论