




已阅读5页,还剩46页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第5课时离散型随机变量的均与方差 正态分布 1 均值 1 若离散型随机变量x的分布列为 基础知识梳理 则称ex 为随机变量x的均值或数学期望 它反映了离散型随机变量取值的 2 若y ax b 其中a b为常数 则y也是随机变量 且e ax b 3 若x服从两点分布 则ex 若x b n p 则ex 基础知识梳理 x1p1 x2p2 xipi xnpn 平均水平 aex b p np 2 方差 1 设离散型随机变量x的分布列为 基础知识梳理 2 d ax b 3 若x服从两点分布 则dx 4 若x b n p 则dx 基础知识梳理 x np 1 p p 1 p a2dx 基础知识梳理 思考 随机变量的均值 方差与样本均值 方差的关系是怎样的 思考 提示 随机变量的均值 方差是一个常数 样本均值 方差是一个随机变量 随观测次数的增加或样本容量的增加 样本的均值 方差趋于随机变量的均值与方差 3 正态曲线的特点 1 曲线位于x轴 与x轴 2 曲线是单峰的 它关于直线对称 3 曲线在x 处达到峰值 4 曲线与x轴之间的面积为 基础知识梳理 上方 不相交 x 1 5 当 一定时 曲线随着 的变化而沿x轴平移 6 当 一定时 曲线的形状由 确定 曲线越 瘦高 表示总体的分布越 曲线越 矮胖 表示总体的分布越 基础知识梳理 越小 集中 越大 分散 基础知识梳理 思考 参数 在正态分布中的实际意义是什么 思考 提示 是正态分布的期望 是正态分布的标准差 1 若随机变量x的分布列如下 则x的数学期望是 a pb qc 1d pq答案 b 三基能力强化 2 正态总体n 0 1 在区间 2 1 和 1 2 上取值的概率为p1 p2 则 a p1 p2b p1 p2c p1 p2d 不确定答案 c 三基能力强化 3 一名射手每次射击中靶的概率为0 8 则独立射击3次中靶的次数x的期望值是 a 0 83b 0 8c 2 4d 3答案 c 三基能力强化 4 教材习题改编 某人进行射击 每次中靶的概率均为0 8 现规定 若中靶就停止射击 若没有中靶 则继续射击 如果只有3发子弹 则射击次数x的数学期望为 用数字作答 答案 1 24 三基能力强化 5 2009年高考广东卷 已知离散型随机变量x的分布列如下表 若ex 0 dx 1 则a b 三基能力强化 关于正态总体在某个区间内取值的概率求法 1 熟记p x p 2 x 2 p 3 x 3 的值 2 充分利用正态曲线的对称性和曲线与x轴之间的面积为1 课堂互动讲练 课堂互动讲练 设x n 5 1 求p 6 x 7 思路点拨 利用正态分布的对称性 p 6 x 7 p 3 x 4 课堂互动讲练 解 由已知 5 1 p 4 x 6 0 6826 p 3 x 7 0 9544 p 3 x 4 p 6 x 7 0 9544 0 6826 0 2718 如图 由正态曲线的对称性可得p 3 x 4 p 6 x 7 名师点评 在利用对称性转化区间时 要注意正态曲线的对称轴是x 而不是x 0 0 课堂互动讲练 若其他条件不变 则p x 7 及p 5 x 6 应如何求解 课堂互动讲练 互动探究 解 由 1 5 p 3 x 7 p 5 2 1 x 5 2 1 0 9544 课堂互动讲练 求离散型随机变量x的均值与方差的步骤 1 理解x的意义 写出x的所有可能取值 2 求x取每个值的概率 3 写出x的分布列 4 由均值的定义求ex 5 由方差的定义求dx 另外 当随机变量x服从两点分布或二项分布时 可不用列出分布列 直接由公式求出ex和dx 课堂互动讲练 课堂互动讲练 2009年高考山东卷 在某学校组织的一次篮球定点投篮训练中 规定每人最多投3次 在a处每投进一球得3分 在b处每投进一球得2分 如果前两次得分之和超过3分即停止投篮 否则投第三次 某同学在a处的命中率q1为0 25 在b处的命中率为q2 该同学选择先在a处投一球 以后都在b处投 用 表示该同学投篮训练结束后所得的总分 其分布列为 课堂互动讲练 1 求q2的值 2 求随机变量 的数学期望e 3 试比较该同学选择都在b处投篮得分超过3分与选择上述方式投篮得分超过3分的概率的大小 课堂互动讲练 思路点拨 首先由p 0 0 03计算出q2 从而可写出分布列 本题便可求解 解 1 由题设知 0 对应的事件为 在三次投篮中没有一次投中 由对立事件和相互独立事件性质可知p 0 1 q1 1 q2 2 0 03 解得q2 0 8 2 根据题意p1 p 2 1 q1 c21 1 q2 q2 0 75 2 0 2 0 8 0 24 p2 p 3 q1 1 q2 2 0 25 1 0 8 2 0 01 p3 p 4 1 q1 q22 0 75 0 82 0 48 p4 p 5 q1q2 q1 1 q2 q2 0 25 0 8 0 25 0 2 0 8 0 24 因此e 0 0 03 2 0 24 3 0 01 4 0 48 5 0 24 3 63 课堂互动讲练 3 用c表示事件 该同学选择第一次在a处投 以后都在b处投 得分超过3分 用d表示事件 该同学选择都在b处投 得分超过3分 则p c p 4 p 5 p3 p4 0 48 0 24 0 72 p d q22 c21q2 1 q2 q2 0 82 2 0 8 0 2 0 8 0 896 故p d p c 即该同学选择都在b处投篮得分超过3分的概率大于该同学选择第一次在a处投以后都在b处投得分超过3分的概率 课堂互动讲练 名师点评 1 随机变量的均值等于该随机变量的每一个取值与该取值时对应的概率乘积的和 2 均值 数学期望 是随机变量的一个重要特征数 它反映或刻画的是随机变量取值的平均水平 均值 数学期望 是算术平均值概念的推广 是概率意义下的平均 3 ex是一个实数 即x作为随机变量是可变的 而ex是不变的 课堂互动讲练 利用均值和方差的性质 可以避免复杂的运算 常用性质有 1 ec c c为常数 2 e ax b aex b a b为常数 3 e x1 x2 ex1 ex2 e ax1 bx2 ae x1 be x2 4 d ax b a2dx 课堂互动讲练 课堂互动讲练 已知x的概率分布为求 1 ex dx 2 设y 2x 3 求ey dy 课堂互动讲练 思路点拨 利用性质e a b ae b d a b a2d 求解 名师点评 是一个随机变量 则 f 一般仍是一个随机变量 在求 的期望和方差时 要应用期望和方差的性质 课堂互动讲练 利用期望和方差比较随机变量的取值情况 一般是先比较期望 期望不同时 即可比较出产品的优劣或技术水平的高低 期望相同时 再比较方差 由方差来决定产品或技术水平的稳定情况 课堂互动讲练 课堂互动讲练 解题示范 本题满分12分 2008年高考广东卷 随机抽取某厂的某种产品200件 经质检 其中有一等品126件 二等品50件 三等品20件 次品4件 已知生产1件一 二 三等品获得的利润分别为6万元 2万元 1万元 而1件次品亏损2万元 设1件产品的利润 单位 万元 为 课堂互动讲练 1 求 的分布列 2 求1件产品的平均利润 即 的数学期望 3 经技术革新后 仍有四个等级的产品 但次品率降为1 一等品率提高为70 如果此时要求1件产品的平均利润不小于4 73万元 则三等品率最多是多少 课堂互动讲练 思路点拨 解答本题要先确定 的取值以及取每个值时的概率 从而正确地列出分布列 求出数学期望 即平均利润 然后解第 3 问时 先设出三等品率为x 列不等式即可求解 解 1 的所有可能取值有6 2 1 2 课堂互动讲练 故 的分布列为 课堂互动讲练 5分 2 e 6 0 63 2 0 25 1 0 1 2 0 02 4 34 7分 课堂互动讲练 3 设技术革新后的三等品率为x 则此时1件产品的平均利润为ex 6 0 7 2 1 0 7 0 01 x x 2 0 01 4 76 x 0 x 0 29 9分依题意 ex 4 73 即4 76 x 4 73 解得x 0 03 所以三等品率最多为3 12分 名师点评 解决此类题目的关键是正确理解随机变量取每一个值所表示的具体事件 求得该事件发生的概率 本题第 3 问充分利用了分布列的性质p1 p2 pi 1 课堂互动讲练 本题满分12分 因冰雪灾害 某柑桔基地果林严重受损 为此有关专家提出两种拯救果树的方案 每种方案都需分两年实施 若实施方案一 预计第一年可以使柑桔产量恢复到灾前的1 0倍 0 9倍 0 8倍的概率分别是0 3 0 3 0 4 第二年可以使柑桔产量为第一年产量的1 25倍 1 0倍的概率分别是0 5 0 5 若实 课堂互动讲练 高考检阅 施方案二 预计第一年可以使柑桔产量达到灾前的1 2倍 1 0倍 0 8倍的概率分别是0 2 0 3 0 5 第二年可以使柑桔产量为第一年产量的1 2倍 1 0倍的概率分别是0 4 0 6 实施每种方案第一年与第二年相互独立 令 i i 1 2 表示方案i实施两年后柑桔产量达到灾前产量的倍数 1 写出 1 2的分布列 课堂互动讲练 2 实施哪种方案 两年后柑桔产量超过灾前产量的概率更大 3 不管哪种方案 如果实施两年后柑桔产量达不到 恰好达到 超过灾前产量 预计利润分别为10万元 15万元 20万元 问实施哪种方案的平均利润更大 课堂互动讲练 解 1 1的所有取值为0 8 0 9 1 0 1 125 1 25 2的所有取值为0 8 0 96 1 0 1 2 1 44 1 2的分布列分别为 课堂互动讲练 4分 2 令a b分别表示方案一 方案二两年后柑桔产量超过灾前产量这一事件 p a 0 15 0 15 0 3 p b 0 24 0 08 0 32 可见 方案二两年后柑桔产量超过灾前产量的概率更大 8分 课堂互动讲练 3 令 i i 1 2 表示方案i的预计利润 则 课堂互动讲练 所以e 1 14 75 e 2 14 1 可见 方案一的预计利润更大 12分 规律方法总结 1 离散型随机变量的均值均值ex与方差dx均是一个实数 ex是算术平均值概念的推广 是概率意义下的平均 dx表示随机变量x对ex的平均偏离程度 dx越大 表明平均偏离程度越大 说明x的取值越分散 反之 dx越小 x的取值越集中 规律方法总结 2 均值 期望 与方差的关系均值 期望 反映了随机变量取值的平均水平 而方差则表现了随机变
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 特色小吃培训基础知识课件
- 大班雪花片教学故事课件
- 离子束混合设备维护考核试卷及答案
- 服务机器人传感器集成工艺考核试卷及答案
- 矿棉板隔热层施工技术要点讲解考核试卷及答案
- 黑色金属铸件精铸工艺考核试卷及答案
- 初中地理黄河文化学案有配套课件和教案
- 2025年黑龙江省牡丹江市导游资格全国导游基础知识模拟题(附答案)
- 焦炭生产持续改进工艺考核试卷及答案
- 2025年河南省政府采购评审专家考试题库附含答案
- GB/T 19289-2019电工钢带(片)的电阻率、密度和叠装系数的测量方法
- 《中国特色社会主义政治经济学(第二版)》第一章导论
- 《安娜·卡列尼娜》-课件-
- sg1000系列光伏并网箱式逆变器通信协议
- 妇科疾病 痛经 (妇产科学课件)
- 重庆大学介绍课件
- 《李将军列传》教学教案及同步练习 教案教学设计
- GMP基础知识培训(新员工入职培训)课件
- 基于Java的网上书城的设计与实现
- 酒店客房验收工程项目检查表(双床房、大床房、套房)
- 开音节闭音节中元音字母的发音规律练习
评论
0/150
提交评论