




全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
课题2.2.2平面与平面平行的判定2.2.4平面与平面平行的性质主备人授课人备课内容个性修改学习目标一、知识与技能: .通过图形探究平面与平面平行的判定定理及其性质定理.熟练掌握平面与平面平行的判定定理和性质定理的应用.二、过程与方法: 通过引导,观察,分析,画图,讨论,总结等方法熟练掌握平面与平面平行的判定定理和性质定理的应用.三、情感态度与价值观: 进一步培养学生的空间想象能力,以及逻辑思维能力.重点难点教学重点:平面与平面平行的判定与性质.教学难点:平面与平面平行的判定.教学方法引导法,练习法,讨论法。教学铺助手段黑板,三角板,多媒体学法做练习,讨论,总结,提问。学习铺助手段练习本,黑板,三角板教学过程个性修改(事例导入)三角板的一条边所在直线与桌面平行,这个三角板所在的平面与桌面平行吗?三角板的两条边所在直线分别与桌面平行,情况又如何呢?下面我们讨论平面与平面平行的判定问题.推进新课新知探究提出问题回忆空间两平面的位置关系.欲证线面平行可转化为线线平行,欲判定面面平行可如何转化?找出恰当空间模型加以说明.用三种语言描述平面与平面平行的判定定理.应用面面平行的判定定理应注意什么?利用空间模型探究:如果两个平面平行,那么一个平面内的直线与另一个平面内的直线具有什么位置关系?回忆线面平行的性质定理,结合模型探究面面平行的性质定理.用三种语言描述平面与平面平行的性质定理.应用面面平行的性质定理的难点在哪里?应用面面平行的性质定理口诀是什么?活动:先让学生动手做题后再回答,经教师提示、点拨,对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路.问题引导学生回忆两平面的位置关系.问题面面平行可转化为线面平行.问题借助模型锻炼学生的空间想象能力.问题引导学生进行语言转换.问题引导学生找出应用平面与平面平行的判定定理容易忽视哪个条件.问题引导学生画图探究,注意考虑问题的全面性.问题注意平行与异面的区别.问题引导学生进行语言转换.问题作辅助面.问题引导学生自己总结,把握面面平行的性质.讨论结果:如果两个平面没有公共点,则两平面平行若=,则.如果两个平面有一条公共直线,则两平面相交若=AB,则与相交.两平面平行与相交的图形表示如图1.图1由两个平面平行的定义可知:其中一个平面内的所有直线一定都和另一个平面平行.这是因为在这些直线中,如果有一条直线和另一平面有公共点,这点也必是这两个平面的公共点,那么这两个平面就不可能平行了. 另一方面,若一个平面内所有直线都和另一个平面平行,那么这两个平面平行,否则,这两个平面有公共点,那么在一个平面内通过这点的直线就不可能平行于另一个平面. 由此将判定两个平面平行的问题转化为一个平面内的直线与另一个平面平行的问题,但事实上判定两个平面平行的条件不需要一个平面内的所有直线都平行于另一平面,到底要多少条直线(且直线与直线应具备什么位置关系)与另一面平行,才能判定两个平面平行呢?如图2,如果一个平面内有一条直线与另一个平面平行,两个平面不一定平行.图2例如:AA平面AADD,AA平面DCCD;但是,平面AADD平面DCCD=DD.如图3,如果一个平面内有两条直线与另一个平面平行,两个平面也不一定平行.图3例如:AA平面AADD,EF平面AADD,AA平面DCCD,EF平面DCCD;但是,平面AADD平面DCCD=DD.如图4,如果一个平面内有两条相交直线与另一个平面平行,则这两个平面一定平行.图4例如:AC平面ABCD,BD平面ABCD,AC平面ABCD,BD平面ABCD;直线AC与直线BD相交.可以判定,平面ABCD平面ABCD.两个平面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.以上是两个平面平行的文字语言,另外面面平行的判定定理的符号语言为:若a,b,ab=A,且a,b,则.图形语言为:如图5,图5利用判定定理证明两个平面平行,必须具备:()有两条直线平行于另一个平面;()这两条直线必须相交.尤其是第二条学生容易忽视,应特别强调.如图6,借助长方体模型,我们看到,BD所在的平面AC与平面AC平行,所以BD与平面AC没有公共点.也就是说,BD与平面AC内的所有直线没有公共点.因此,直线BD与平面AC内的所有直线要么是异面直线,要么是平行直线.图6直线与平面平行的性质定理用文字语言表示为:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.因为,直线BD与平面AC内的所有直线要么是异面直线,要么是平行直线,只要过BD作平面BDDB与平面AC相交于直线BD,那么直线BD与直线BD平行. 如图7.图7两个平面平行的性质定理用文字语言表示为:如果两个平行平面同时和第三个平面相交,那么它们的交线平行.两个平面平行的性质定理用符号语言表示为:ab.两个平面平行的性质定理用图形语言表示为:如图8.图8应用面面平行的性质定理的难点是:过某些点或直线作一个平面.应用线面平行性质定理的口诀:“见到面面平行,先过某些直线作两个平面的交线.”应用示例思路1例1 已知正方体ABCDA1B1C1D1,如图9,求证:平面AB1D1平面BDC1.图9活动:学生自己思考或讨论,再写出正确的答案.教师在学生中巡视学生的解答,发现问题及时纠正,并及时评价.证明:ABCDA1B1C1D1为正方体,D1C1A1B1,D1C1=A1B1.又ABA1B1,AB=A1B1,D1C1AB,D1C1=AB.四边形ABC1D1为平行四边形.AD1BC1.又AD1平面AB1D1,BC1平面AB1D1,BC1平面AB1D1.同理,BD平面AB1D1.又BDBC1=B,平面AB1D1平面BDC1.例2 证明两个平面平行的性质定理.解:如图11,已知平面、满足,=a,=b,求证:ab.图11证明:平面平面,平面和平面没有公共点.又a,b,直线a、b没有公共点.又=a,=b,a,b.ab.课后测试判断题:(1)如果 a,b 是两条直线,且ab,那么a平行于经过 b 的任何直线。( )(2)如果直线 a 和平面 满足 a ,那么 a 与平面内的任何直线平行。 ( ) (3) 如果直线 a ,b 和平面满足a , b 那么ab 。( ) (4) 如果直线a ,b和平面满足ab , a ,b那么b ,b 。 ( ) 选择题:(1) 下列命题中,错误的是( ) (A)平行于同一条直线的两个平面平行。 (B)平行于同一个平面的两个平面平行。 (C) 一个平面与两个平行平面相交,交线平行。 (D) 一条直线与两个平行平面中的一个相交,则必与另一个相交。 (2)若直线 a 不平行于平面 ,则下列结论成立的是( ) (A) 内的所有直线与直线a 异面。 (B) 内不存在与a 平行的直线。 (C) 内的直线都与a 相交。 (D) 直线 a 与平面有公共点。 课堂小结两个
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中级会计重点试题及答案收集
- 无人机与地面控制系统互动试题及答案
- 无人机驾驶员必要技能与执照考试试题及答案
- 消防工作计划与实施要点试题及答案
- 护理中的伦理冲突初级护师考试试题及答案
- 无人机驾驶员执照手续考题及答案
- 2025年团员发展思路试题及答案
- 2025年消防行业证书试题及答案解读
- 五年级数学(小数除法)计算题专项练习及答案
- 无人机使用者的法律责任试题及答案
- 有机肥原材料采购合同范本
- 2024新版挂名法人免责协议完整版
- (正式版)JTT 1497-2024 公路桥梁塔柱施工平台及通道安全技术要求
- python程序设计-说课
- MOOC 一生的健康锻炼-西南交通大学 中国大学慕课答案
- 中国古典文学中的生态意识
- 牛顿第三定律说课市公开课一等奖省赛课微课金奖课件
- 示范村建设项目勘察设计后续服务的安排及保证措施
- AI工业质检简介演示
- 2023年10月自考试题04737C++程序设计
- 电子元件考题及参考答案
评论
0/150
提交评论