

免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2.2.2 平面与平面平行的判定学案一学习目标:以立体几何的定义、公理和定理为出发点,通过直观感知、操作确认、思辨论证,认识和理解空间中面面平行的判定,掌握两个平面平行的判定定理与应用及转化的思想.二重点、难点:重点:难点:三知识要点:面面平行判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行用符号表示为:.四自主探究:(一)例题精讲:【例1】如右图,在正方体ABCDA1B1C1D1中,M、N、P分别是C1C、B1C1、C1D1的中点,求证:平面MNP平面A1BD.证明:连结B1D1,P、N分别是D1C1、B1C1的中点, PNB1D1.又B1D1BD,PNBD. A1AB1BC1CD1DGEF又PN不在平面A1BD上,PN平面A1BD.同理,MN平面A1BD. 又PNMN=N, 平面PMN平面A1BD.【例2】正方体ABCDA1B1C1D1中(1)求证:平面A1BD平面B1D1C;(2)若E、F分别是AA1,CC1的中点,求证:平面EB1D1平面FBD 证明:(1)由B1BDD1,得四边形BB1D1D是平行四边形,B1D1BD,又BD 平面B1D1C,B1D1平面B1D1C,BD平面B1D1C同理A1D平面B1D1C而A1DBDD,平面A1BD平面B1CD(2)由BDB1D1,得BD平面EB1D1取BB1中点G,AEB1G从而得B1EAG,同理GFADAGDFB1EDFNMPDCQBADF平面EB1D1平面EB1D1平面FBD 【例3】已知四棱锥P-ABCD中, 底面ABCD为平行四边形. 点M、N、Q分别在PA、BD、PD上, 且PM:MA=BN:ND=PQ:QD. 求证:平面MNQ平面PBC. 证明: PM:MA=BN:ND=PQ:QD. MQ/AD,NQ/BP,而BP平面PBC,NQ 平面PBC, NQ/平面PBC.又ABCD为平行四边形,BC/AD, MQ/BC,而BC平面PBC,MQ 平面PBC, MQ/平面PBC. 由MQNQ=Q,根据平面与平面平行的判定定理, 平面MNQ平面PBC.点评:由比例线段得到线线平行,依据线面平行的判定定理得到线面平行,证得两条相交直线平行于一个平面后,转化为面面平行. 一般证“面面平面”问题最终转化为证线与线的平行.【例4】直四棱柱中,底面ABCD为正方形,边长为2,侧棱,M、N分别为A1B1、A1D1的中点,E、F分别是B1C1、C1D1的中点. (1)求证:平面AMN平面EFDB;(2)求平面AMN与平面EFDB的距离. 证:(1)连接,分别交MN、EF于P、Q. 连接AC交BD于O,连接AP、OQ.由已知可得, .由已知可得,且. , . 平面AMN平面EFDB.解:(2)过作平面AMN与平面EFDB的垂线,垂足为H、H,易得.由, 根据, 则 ,解得. 所以,平面AMN与平面EFDB的距离为.点评:第(1)问证面面平行,转化途径为“线线平行线面平行面面平行”. 第(2)问求面面距离,巧妙将中间两个平面的距离,转化为平面另一侧某点到平面距离的比例,然后利用等体积法求距离. 等价转化的思想在本题中十分突出,我们可以用同样的转化思维,将此例中的两个平面的距离,转化为求点B到平面ABC的距离.五目标检测:(一)基础达标1下列说法正确的是( ). A. 一条直线和一个平面平行,它就和这个平面内的任一条直线平行 B. 平行于同一平面的两条直线平行 C. 如果一个平面内的无数条直线平行于另一个平面,则这两个平面平行 D. 如果一个平面内任何一条直线都平行于另一个平面,则这两个平面平行2在下列条件中,可判断平面与平行的是( ). A. 、都平行于直线l B. 内存在不共线的三点到的距离相等 C. l、m是内两条直线,且l,m D. l、m是两条异面直线,且l,m,l,m3下列说法正确的是( ). A. 垂直于同一条直线的两条直线平行 B. 平行于同一个平面的两条直线平行 C. 平行于同一条直线的两个平面平行 D. 平行于同一个平面的两个平面平行4经过平面外的两点作该平面的平行平面可以作( ). A. 0个B. 1个C. 0个或1个D. 1个或2个5不在同一直线上的三点A,B,C到平面的距离相等,且A,则( ). A. 平面ABC B. ABC中至少有一边平行于 C. ABC中至多有两边平行于 D. ABC中只可能有一条边与平行6已知直线a、b,平面、, 且a/ b,a/,/,则直线b与平面的位置关系为 .7已知a、b、c是三条不重合直线,a、b、g是三个不重合的平面,下列说法中: ac,bcab; ag,bgab; ca,cbab; ga,baab; ac,acaa; ag,agaa.其中正确的说法依次是 . (二)能力提高8在棱长为a的正方体ABCD-A1B1C1D1中,E,F,G,M,N,Q分别是棱A1A,A1B1,A1D1,CB,CC1,CD的中点,求证:平面EFG平面MNQ. 9两个全等的正方形ABCD和A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电熨斗模具采购合同范本
- 自愿顶班值班协议书模板
- 瑜伽馆策划收款合同范本
- 税控系统服务费合同协议
- 销售大型制粒机合同范本
- 瑜伽老师孕期免责协议书
- 闵行区租房合同转租协议
- 职工怀孕赔偿协议书模板
- 福永指标房买卖合同协议
- 结婚彩礼协议书合同模板
- 福海县高校毕业生三支一扶计划招募考试真题2024
- 文化多元教育评估-洞察及研究
- 沈阳市高校毕业生“三支一扶”计划招募笔试真题2024
- 大同市城市规划管理技术规定
- 土方回填试验报告
- 五矿集团供应商注册指南(参考范本)
- 祛斑销售回答方法介绍
- 勘察外业见证合同
- 行政事业单位审计底稿模板-内控调查
- 安徽关于成立电动车公司可行性报告【范文参考】
- 物理化学:9-表面现象-液体表面1
评论
0/150
提交评论