M36外螺纹-三通管注塑模具设计【24张CAD图纸+PDF图】
收藏
资源目录
压缩包内文档预览:
编号:118638934
类型:共享资源
大小:11.73MB
格式:ZIP
上传时间:2021-03-24
上传人:好资料QQ****51605
认证信息
个人认证
孙**(实名认证)
江苏
IP属地:江苏
45
积分
- 关 键 词:
-
M36
螺纹
三通
注塑
模具设计
24
CAD
图纸
PDF
- 资源描述:
-
喜欢这套资料就充值下载吧。。。资源目录里展示的都可在线预览哦。。。下载后都有,,请放心下载,,文件全都包含在内,,【有疑问咨询QQ:414951605 或 1304139763】
- 内容简介:
-
湘电培训与教学 2 0 0 7年第3期一、 概述几何造型是C A D中的关键技术之一, 现代工业产品设计对C A D系统处理复杂拓扑形体的能力提出了越来越高的要求。虽然以N U R B S为代表的造型表示方法已经取得了非常成功的应用, 但它仅适于表示规则拓扑形体( 单个补片) , 拼接和裁剪还存在很大困难。细分曲面造型技术是一种基于样条可细化性质基础上的以网格细分为特征的离散造型方法, 具有表示的任意拓扑性, 光滑保证性, 计算简单性等传统方法难以比拟的优点, 是目前国际上计算机图形学领域的最新技术。本文介绍了几种常用细分方法及其应用。二、 细分方法1 . L o o p细分方法L o o p法是C h a r l e s L o o p提出的一种简单的基于三角形网格的逼近型面拆分细分法。它被证明了包括边界情况在内,即使点的价达到1 0 0都可以保持C1阶连续。L o o p法是基于三向箱样条的细分方法,在规则网格处可生成C2阶连续的曲面,奇异点处可以有C1阶连续, 其网格可以是任意的。细分规则L o o p法的细分规则如图1。其中可为或n 3 , = 3 / ( 8 k )边界和折边处使用了特殊规则,可以在边界和折边处生成仅依赖于该边上点的三次样条曲线。切向量 计算L o o p规则中的切向量是非常简单的。内部点的切向量可记为:( 1 )该公式可以在细分各个的层次应用。通常, 切向量是用来计算法向量的。法向量可通过叉乘t1 t2得到, 该叉乘可也即由点组 成的所有三角形的法线的加权平均。法线的标准计算方式是该点相邻的所有三角形的法线的平均,上式可以看作是对此地一个逼近,t1 t2的计算量要比平均所有三角形法线的计算量小。图1L o o p细分规则在边界上, 点沿边界线的切线可为。垂直于边界线的切线可为:( 2 )其中,极限位置控制点在细分时, 其极限点是一个固定点。曲面细分方法及其应用信息工程系 谢伟红 人力资源部 叶亮荣【 内容提要】 细分曲面造型技术是一种基于样条可细化性质基础上的以网格细分为特征的离散造型方法, 具有表示的任意拓扑性, 光滑保证性, 计算简单性等传统方法难以比拟的优点。本文介绍了常用几种细分方法的细分规则及其应用。如L o o p细分法、 蝴蝶改进法、C a t m u l l C l a r k法和D o o - S a b i n法。【 关键词】 细分方法L o o p细分法 蝴蝶改进法C a t m u l l C l a r k法D o o - S a b i n法应用与实用技术4 5-湘电培训与教学 2 0 0 7年第3期( 3 )其中对于边界边和折边, 则为( 4 )2 .蝴蝶改进法蝴蝶法首先被D y n,G r e g o r y和L e v i n提出, 最初的蝴蝶法也是建立在任意三角形网格上的, 其极限曲面在规则网格处是C1阶连续的,但在k = 3和k 7的奇异点处达不到C1阶光滑。和基于样条的逼近方法不同,蝴蝶法不能产生分段多项式曲面。Z o r i n提出了一个改进方案, 可以在任意网格上产生C1连续的曲面。其规则如图2:其中系数si, 当k 5时, 为;k = 3,;蝴蝶法是一种插值型细分法,它的偶点保持不变。图2蝴蝶改进法细分规则3 .C a t m u l l C l a r k细分方法C a t m u l l - C l a r k法是基于张量积双三次样条建立的, 其规则如下图3 . 5所示, 其中。该法产生的曲面除在奇异点处C1连续外, 其它处处C2连续的。图3C a t m u l l C l a r k细分规则在边界运用三次样条系数可以产生满意的效果, 但不是严格意义的C1连续。 通过对它的改进,可以达到这种结果。如图3 . 6。不过, 更好的方法是用取代5 / 8, 用取得1 / 8。图4改进C a r m u l l C l a r k规则C a r m u l l - C l a r k法是基于四边形网格定义的,但可以对任意多边形网格使用C a r m u l l - C l a r k规则的通用形式。面点是多边形各角点的平均;边点是边的端点和邻面的新面的的平均;对偶点的计算方式有多种,可用下面的公式:( 5 )4 .D o o - S a b i n法D o o - S a b i n细分是一种点拆分的细分方案, 它在概念上非常简单, 其奇点和偶点没有差异, 规则的定义也非常简单, 一种表达就够了, 仅在边界处有所不同,边界的极限曲线是二次样条线。D o o -S a b i n细分的规则如图5所示:应用与实用技术4 6-湘电培训与教学 2 0 0 7年第3期图5D o o - S a b i n细分规则其中系数,。对于该系数C a t m u l l和C l a r k还给了另一种定义:,。该方案被分析是C1连续的。同时它还有一个显著的特性: 规则点细分可以看作是两次平均步骤地综合。如图6。图6D o o - S a b i n规则细分可以看作两次中点细分的综合。H a b i b和Wa r r e n提出了一种更简单的方案,在规则情况下, 只需要三个控制点。如图7所示。图7中边(M i d e d g e) 细分规则其中系数。中边细分方案只具有C0阶连续, 它在规则情况下,也可以看作两步均值的结果, 如图8所示。图8中边法规则细分可以看作两次边点的平均。三、 细分方法应用图9为不同的细分规则细分结果。一般,L o o p法和C a r m u l l C l a r k法细分的结果要好看一些, 因为它们在规则网格上产生的是C2光滑曲面。由于正方体的面都是四边形,C a t m u l l C l a r k法产生的面最为好看。L o o p法产生的面是不对称的, 因为正方体三角化后本身就是不均匀的。 而D o o - S a b i n法和蝴蝶法的细分结果和正方体最相似。蝴蝶改进法产生的曲面的质量最差, 因为它是一种插值法。插值的结果越接近原曲面, 曲面的质量就越差。图9不同的细分规则时, 四方体细分产生的结果图1 0不同的细分规则时, 四面体的细分结果图1 0是四面体的细分结果,情况大致相同。注意到, 对于逼近细分方案, 都有收缩的趋势, 这也是它们的一个特性。如果细分结果不必插值初始网格的话,L o o p法和C a r m u l l - C l a r k法在实际应用中运用的更广泛一些。【 参考文献】 1 A d i L e v i n . C o m b i n e ds u b d i v i s i o ns c h e m e s ,P h Dt h e s i s , 2 0 0 0 , T e l - A v i v U n i v e r s i t y . 2 A d iL e v i n , C o m b i n e ds u b d i v i s i o ns c h e m e sf o r t h e d e s i g n o fs u r f a c e s s a t i s f y i n g b o u n d a r yc o n d i t i o n s . C o m p u t e r A i d e dG e o m e t r i cD e s i g n1 6 ( 5 ) ,1 9 9 9 , p a g e s 3 4 5 - 3 5 4 3 C a t m u l l E , C l a r kJ . R e c u r s i v e l yg e n e r a t e dB- s p l i n es u r f a c eo nt o p o l o g i c a lm e s h e s . C o m p u t e rA i d e dD e s i g n , 1 9 7 8 , 1 0 ( 6 ) : 3 0 0 - 3 5 0 4 D e n i sZ o r i n ,
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。