版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、微分方程习题、选择题1. 下列微分方程中,是二阶线性微分方程的是2 2(A) (y ) y y x; (B) (y ) 2y cosx ;(C) y y2y ; ( D) xy 5y 3x2y ln2x.D2. 下列微分方程中,所给的函数是通解的为(A) y 二 y x ;(B) y-,x2y2 C2 ;yy(C) y-, y C ; (D) y -,x2 y21.y xyB3. 下列微分方程中为可分离变量方程的是(A)dxxt t ;( B)xdxextsint ;(C)生xt t2;( D)生x2t2.dtdtdtdtA4. 微分方程y 2y y xe %的特解形式应设为(A) (ax b
2、)e x ; ( B) x(ax b)e x ; ( C) x2 (ax b)e x ; ( D) axe x b .C5. 微分方程y y 0的通解为(A) y C1ex C2e x ;( B) y (G C2x)e x ;(C) y C1 cosx C2 sinx ; ( D) y (C1 C2x)ex.C6. 微分方程y 2y 3 0的通解为7.微分方程y 2xyxe的通解为(A) y (Cx2)ex(B)(C2X x27)e ;(C) y (C)e(D)(Cx2 x2尹8微分方程0的通解为(A) y ex;(B) y ex e(C) yCiexC2e x;(D) y Ci C2e x.
3、9.已知为 y ay 2y0的一个解,(A) 0 ;(B) 1; (C)1; ( D)2.10.方程y 4y cos2x的特解形式应为((A) y Acos2x ;(B) y Asin 2x ;11.下列方程中是一阶微分方程的是(A)2x y 2y(y)22x ; ( B) y xy x0 ;(C)y xyyy ;( D) (y )2 y 0.(A)12.微分方程xy2y的特解为()(A)y 2x ;(B)y 2x2 ;( C) y 2x3 ;(D) y 2x4(C) y Acos2x Bsin2x ;(D) y x Acos2x Bsin2x.(B)(A)y2(3Ce2x);(B) y32x
4、Ce 2x ;2(C)y2(3xCe 2);(D) y1 2-(3 Ce 2)213. 方程y 2y 0的通解是()(A)y sin 2x ; (B)y4e2x;(C)y Ce2x;(D)yex.(C)14. 微分方程xyy x(y)3 y4y 0的阶数是()(A) 3 ; (B) 4 ; (C) 5 ; (D) 2.(D)15. 方程xy y 3的通解是C3CC(A)y3; (B)yC ;( C)y3;(D)y3.xxxx(A)16. 下列函数中,哪个是微分方程dy 2xdx 0的解(A) y 2x; (B) y x2 ; (C) y 2x; (D) yx2.(B)17. 微分方程(y )2
5、 y (y )3 xy4 0的阶数是(A) 3 ; (B) 4 ; (C) 5; (D) 2.(D)18. 微分方程yln xdx xln ydy满足y(1) 1的特解是(A) ln2x ln2 y 0 ; (B) ln2x ln2y 1 ;(B) ln2 x ln2 y ; (D) ln2 x ln2 y 1 ;(C)19. 方程y y 1的通解是(A)yCex;(B)y Cex 1 ; (C)yCex1 ;(D)y C 1 .(C)第5页20. 方程 y 2y 0 的通解是 ( )(A) y Ce2x ; (B) y (C1 C2x)e2x;(C) y C1 C2e2x;(D) y C1
6、sin x C2cosx.(C)21. 对于微分方程 y 5y 6y xe2x ,利用待定系数法求其特解 y* 时,下 列特解设法正确的是 ( )(A) y* Axe2x ;(B) y* (Ax B)e2x;(C) y* x(Ax B)e2x;(D) y* x2(Ax B)e2x .(B)22. 微分方程 y 4y 3y 0的通解为A)yC1exC2e 3x ;(B) yC1e xC2e3x;C)yC1exC2e3x;(D)yC1e xC2e 3x .C)23. 已知二阶常系数线性齐次微分方程的通解为 y C1e2x C2e 3x ,则此方程为A) yy 6y0;( B) yy 6y0;C)
7、yy 6y0;( D) yy 6y0.D)二、计算题1. y cosx ysinx 1;解 方程变形为 y ytanx secx利用公式得第 6 页tanxdx esecxetan xdxdx Cln cos xln cos x .e secxe dx Ccosxsec2 xdxC sin xC cosx ( C为任意常数).2.x2dy(2xy x1)dx0,y(1)方程变形为dydx£dxe x2dxxdxe 2ln4 x2dx cx弓(其中c为任意常数)x将初始条件y10代入通解中,得c-,因此方程满足初始条件的特解为21x2x23. xy y xe,y(i)解方程变形为1 -
8、y x1dx e x,通解为丄dxexe x dx-(x 1)ex C x将初始条件yi1代入通解中,得c1,所以特解为4.求微分方程y 5y 6y 0的通解;解所给微分方程的特征方程是.(2 分)特征根12, 23,是两个不相等的实数根,.(3 分)因此所求通解为2 x3xyC1 eC?e(5 分)第10页5.求微分方程y 4y 13y0的通解;解所给微分方程的特征方程是2413 0 .(2 分)特征根 2 3i,是一对共轭复根, .(3分)因此所求通解为y e2x(CiCOs3x C2 sin3x). (5 分)6.求微分方程y 2y y 0的通解.解所给微分方程的特征方程是21 0 .(2 分)特征根i 21,是两个不相等的实数根, .(3分)因此所求通解为y (C1 C2x)e x. (5 分)7. 求微分方程xy y lny 0的通解.解原方程变形为_d生2分yln y.3eCx是一个可分离变量的微分方程 两边积分得In ln y ln x ln C 通解为y0的通解.8. 求微分方程xy yln :1 y解原方程变形为In xdx.2分(1 y2)dyy是一个可分离变量的微分方程两边积分得2In y (In x)2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年智能城市公共交通调度系统可行性研究报告
- 2025年即时配送服务网络建设项目可行性研究报告
- 2025年可再生能源研发项目可行性研究报告
- 网贷合同解约协议
- 2025年短视频平台营销效果提升项目可行性研究报告
- 金蝶数据顾问岗位面试题集
- 航空公司财务主管面试问题集
- 市场准入专员笔试考试题库含答案
- 天津港质量检查考核标准
- 2025年关键材料回收与再利用项目可行性研究报告
- 四川省达州市达川中学2025-2026学年八年级上学期第二次月考数学试题(无答案)
- 2025陕西西安市工会系统开招聘工会社会工作者61人历年题库带答案解析
- 江苏省南京市秦淮区2024-2025学年九年级上学期期末物理试题
- 外卖平台2025年商家协议
- 2025年高职(铁道车辆技术)铁道车辆制动试题及答案
- (新教材)2026年人教版八年级下册数学 24.4 数据的分组 课件
- 2025陕西榆林市榆阳区部分区属国有企业招聘20人考试笔试模拟试题及答案解析
- 老年慢性病管理及康复护理
- 2025广西自然资源职业技术学院下半年招聘工作人员150人(公共基础知识)测试题带答案解析
- 2026年海南经贸职业技术学院单招(计算机)考试参考题库及答案1套
- 代办执照合同范本
评论
0/150
提交评论