数列求和常用的五种方法_第1页
数列求和常用的五种方法_第2页
数列求和常用的五种方法_第3页
数列求和常用的五种方法_第4页
数列求和常用的五种方法_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、数列求和常用的五种方法数列求和常用的五种方法、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法1、等差数列求和公式:n(a an) n 2na1n(n 1)d22、等比数列求和公式:na1a1(1 qn)(q 1)a anq1 q(q 1)3、4、nk2k 11 n(n 1)(2n61)5、Snk3k 11 2n(n 1)1.已知log3 x-L,求 xlog 2 3的前n项和.解:由log 3 Xlog2 3log3 Xlog 3 2由等比数列求和公式得Snx X2=X(1 X1 X12n)-=112nc n 1Snk n(n 1)k 12二、错位相减法求和这种方法

2、是在推导等比数列的前 n项和公式时所用的方法,这种 方法主要用于求数列an bn的前n项和,其中 an卜 bn 分别是 等差数列和等比数列.例 2.求和:Sn 1 3x 5x2 7x3(2n 1)xn 1解:由题可知,(2n 1)xn1的通项是等差数列2n1的通项与等比数列xn1的通项之积当 x 1时,Sn1 3 5 7当x 1时1 2n 1 n 22n 1 n设 xSn 仅 3x2 5x3 7x4(2n 1)xn(设制错位)(1 x)Sn 1 2x 2x2 2x3 2x42xn 1 (2n 1)xn (错位相减)再利用等比数列的求和公式得:1 xn 1(1 x)Sn 1 2x (2n 1)x

3、n1 xSn(2n 1)xn 1 (2n 1)xn (1 x)(1 x)2a 0,a 1,数列an是首项为a,公比也为a的等比数列,令bn an lg an (n N),求数列bn的前n项和Sn。解析:n .n an a ,bn n a lg aSn (a 2a2 3a3nan)lg a234n 1aSn (a2a3ana ) lg a-得:(1 a)Sn (a a2an nan1)lgaSna1g a2 1 (1 n na)an 。(1 a)2点评:设数列an的等比数列,数列bn是等差数列,则数列anbn的前n项和Sn求解,均可用错位相减法三、反序相加法求和这是推导等差数列的前n项和公式时所

4、用的方法,就是将一个数 列倒过来排列(反序),再把它与原数列相加,就可以得到n个3 an).12。(1)求力)和f(1)n的值;f(U)n(2)数列1-h ir1an 满足:anf (0) f (-)n2 f(-) nn 1f( )nf,数例4.函数f(x)对任意x R,都有f (x) f (1 x)歹!J an等差数列吗请给与证明。(3 )44an 132竺,nbn2试比较Tn与Sn的大小。解:(1)令x2,可得 f(;) 4f(1) f (n n n11-)f(-) nf(1-) n(2),1,2f(0)f(-)f(2)一 anf(l)f(- nn n1) f(n 2)nf(j f n21

5、f (-) f (1)f(0) 2anf(0)f(1)1 f(-) nnf (一f(1)n,1 ,f(0) (n21)(3)bnTn116(1 子16(11(n 1) n,3216Sn四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列 适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.例5.求数列的前n项和:1 1,1 4,解:a11设 Sn (1 1)(4)(a a7)1 7, FaJ n 1 a3n3n2)2222将其每一项拆开再重新组合得(1 43n 2)1Sn (1 a(分组)当a= 1时,s(3n 1)n21)n(分组求和)例6.11 时,

6、Sn - 11 - a求数列n(n+1)(2n+1)的前(3n 1)n2n项和.(3n 1)n2n31) =(2kk 1-23k k)Sn = 2nnn32k 3 k kk 1k 1k 1(分组)=2(1323n3)3(1222n2) (1 2n)解:设 akk(k 1)(2k 1)2k33k2knSn k(k 1)(2k k 1将其每一项拆开再重新组合得_ n2(n 1)2 n(n 1)(2n 1) n(n 1) _ n(n 1)2(n 2)五、裂项法求和这是分解与组合思想在数列求和中的具体应用 .裂项法的实质 是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项, 最终达到求和的目的.通项分解(裂项)如:(1)an f (n1)f(n)(2)Sin1cosn cos(n 1)tan(n 1)tann(31n(n 1)(4)(2n)2(2n 1)(2n 1)(5)ann(n1)(n 2)1 (n 1)(n一2)(6)an例7.n 2n(n 1)解:设a12n2(n1) nn(n 1)12n1n 2n 11(n 1)2n,则 Sn 1(n 1)2n求数列12 , 2. 3 ' ' . n 、n=,的前n项和.1=(、. 2,1)(裂项)12.3例8. 在数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论