有关椭圆的中点弦问题_第1页
有关椭圆的中点弦问题_第2页
有关椭圆的中点弦问题_第3页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、有关椭圆的中点弦问题、教学目标:掌握解决有关椭圆的中点弦问题的多种方法学会解题方法的迁移了解设而不求的数学思想二、教学重点:掌握解决有关椭圆的中点弦问题的多种方法三、教学难点:掌握解决有关椭圆的中点弦问题的多种方法四、教学过程1、引入过程圆锥曲线是高考的重点,也是一个难点。每年的高考中都占有20-40分, 必有一道解答题o而椭圆又是圆锥曲线中的十分重要的一部分 ,并且很多双曲 线和抛物线的问题都可以借用解决椭圆问题的方法来解决 。所以学习好了椭圆 就相当于学好了圆锥曲线的一大半。而有关椭圆的中点弦问题又是椭圆中十分 重要、典型的问题。有关椭圆的中点弦问题中在考试中一般以三种类型的题目出现:(1

2、)求弦所在的直线方程;(2)求弦的中点的轨迹方程;(3)求弦的中点坐标。那么今天这节课我们主要来学习一下弦所在的直线方程的求法。2、例题讲解X2例1已知直线L和椭圆一42y 1相交于A,B两点,M(1,1)为A,B的中点,2求直线L的方程。解:方法一:代入法设两点坐标为AgyJ , B(X2,y2)(1)当直线L斜率不存在时,显然不符合题意(2)直线L斜率存在,设为k,则直线方程为:y k(x 1) 1y k(x 1) 12 2x_ y_ 142将直线带入椭圆方程得:4k 202 2 2(1 2k )x 4k(1 k)x 2kx1x24k(1 k)1 2k2所以所求直线为:y分析:这种方法是运

3、用方程的思想,直线与椭圆的交点也就是直线方程与椭圆方程的方程组的解。但是在解题中并没有把交点直接求出来,而是运用了韦达定理得到用k所表示的两根之和。这里把A,B的坐标设出来而没有求,也是设而不求的思想。方法二:点差法 设两点坐标为A(X1,yJ, Bgy)2 2X1y11422 2X2y2142两式作差得:(X X2)(X1X2)4(力 y2)(y1 y?)2变形可得:2(%y2)(%y2)2b_2(X1X2)(X1X2)4akOM所以所求直线为:y 分析:这种方法利用了作差变形,直接得到了直线的斜率,对于解题十分方 便。这里也没有求出点的坐标,也体现了设而不求的思想方法三:作差法设两点坐标分

4、别为:A(x, y)与B(2 x,2 y)2 2x- L 142(2 x)2(2 y)2 142两式作差得:32y x 3 0 即 y x2 2分析:作差后直接得到一个关于x与y的方程,因为x与y就是直线上的点,所以这个方程就是所求的直线方程。总结:运用第一种方法解题时,思路比较简单清楚,就是为了得到两根之和的表达 式,但是需要列出方程组后把直线方程带入椭圆方程,计算量比较大。这种思路是解决圆锥曲线问题的一种最基础、最通用、最重要的方法。第二种点差法比第一种简单方便,主要是用来解决中点弦问题的。它不仅可以 用来求中点弦的直线方程问题,也可以求中点弦中点的轨迹方程以及求中点坐 第三种方法是专门针对求直线方程的,它是一种很特殊的方法,对于这类求直 线方程的问题能够快速而精确的解决。前面两种方法体现了数学中的设而不求的思想,这种思想在解决圆锥曲线的问题中经常使用。这些方法不仅可以解决椭圆的中点弦问题,对于双曲线与抛物线也可以使用,但是有时候也要注意他们自身的一些特性。2 2练习:已知直线L与双曲线 11相交于A,B两点,M (1,1)为A,B的中点,42求直线L的方程。五、课堂小结,特别今天我们学习了有关椭圆中点弦中求弦所在直线方程的问题的三种解法是点差法,它是解决有关椭圆中点弦问题的一种十分通用且方便的方法。当我们在平时遇到问题

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论