




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、高中数学公式、定理整理乘法与因式分解a2-b2=(a+b(a-ba3+b3=(a+b(a2-ab+b2 a3-b3=(a-b(a2+ab+b2三角不等式 |a+b|a|+|b| |a-b|a|+|b| |a|b<=>-bab |a-b|a|-|b| -|a|a|a|一元二次方程的解 -b+(b2-4ac/2a -b-(b2-4ac/2a根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理判别式b2-4ac=0 注:方程有两个相等的实根b2-4ac>0 注:方程有两个不等的实根b2-4ac<0 注:方程没有实根,有共轭复数根三角函数公式两角和公式sin(
2、A+B=sinAcosB+cosAsinBsin(A-B=sinAcosB-sinBcosAcos(A+B=cosAcosB-sinAsinBcos(A-B=cosAcosB+sinAsinBtan(A+B=(tanA+tanB/(1-tanAtanBtan(A-B=(tanA-tanB/(1+tanAtanBcot(A+B=(cotAcotB-1/(cotB+cotAcot(A-B=(cotAcotB+1/(cotB-cotA倍角公式tan2A=2tanA/1-(tanA2cos2a=(cosa2-(sina2=2(cosa2 -1=1-2(sina2半角公式sin(A/2=(1-cosA/
3、2 sin(A/2=-(1-cosA/2cos(A/2=(1+cosA/2 cos(A/2=-(1+cosA/2tan(A/2=(1-cosA/(1+cosA tan(A/2=-(1-cosA/(1+cosA cot(A/2=(1+cosA/(1-cosA cot(A/2=-(1+cosA/(1-cosA 和差化积2sinAcosB=sin(A+B+sin(A-B2cosAsinB=sin(A+B-sin(A-B 2cosAcosB=cos(A+B-sin(A-B-2sinAsinB=cos(A+B-cos(A-BsinA+sinB=2sin(A+B/2cos(A-B/2cosA+cosB=2
4、cos(A+B/2sin(A-B/2tanA+tanB=sin(A+B/cosAcosB某些数列前n项和1+2+3+4+5+6+7+8+9+n=n(n+1/21+3+5+7+9+11+13+15+(2n-1=n2 -2+4+6+8+10+12+14+(2n=n(n+1 512+22+32+42+52+62+72+82+n2=n(n+1(2n+1/613+23+33+43+53+63+n3=n2(n+12/41*2+2*3+3*4+4*5+5*6+6*7+n(n+1=n(n+1(n+2/3正弦定理 a/sinA=b/sinB=c/sinC=2R 注:其中 R 表示三角形的外接圆半径余弦定理 b2
5、=a2+c2-2accosB 注:角B是边a和边c的夹角圆的标准方程 (x-a2+(y-b2=r2 注:(a,b是圆心坐标圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c'*h正棱锥侧面积S=1/2c*h' 正棱台侧面积 S=1/2(c+c'h'圆台侧面积 S=1/2(c+c'l=pi(R+rl 球的表面积 S=4pi*r2圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l弧长公
6、式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长柱体体积公式 V=s*h 圆柱体 V=pi*r2h定理:1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同
7、位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理(SAS 有两边和它们的夹角对应相等的两个三角形全等- 2 高中数学公式23 角边角公理( ASA有两角
8、和它们的夹边对应相等的两个三角形全等24 推论(AAS 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS 有三边对应相等的两个三角形全等26 斜边、直角边公理(HL 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等 (即等边对等角31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3
9、 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边35 推论1 三个角都相等的三角形是等边三角形36 推论 2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关
10、于某条直线对称的两个图形是全等形43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c247勾股定理的逆定理如果三角形的三边长a、b、c有关系a2+b2=c2 ,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理 n边形的内角的和等于(n-2&
11、#215;180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有
12、三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a×b÷267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角北京四中网校 71定理1 关于中心对称的两个图形是全等的 72定理2 关于中心对称的两个图形,对称点连线都经过
13、对称中心,并且被对称中 心平分 73逆定理 如果两个图形的对应点连线都经过某一点,并且被这一 点平分,那么 这两个图形关于这一点对称 74等腰梯形性质定理 等腰梯形在同一底上的两个角相等 75等腰梯形的两条对角线相等 76等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形 - 3 高中数学公式 77对角线相等的梯形是等腰梯形 78平行线等分线段定理 如果一组平行线在一条直线上截得的线段 相等,那么在其他直线上截得的线段也相等 79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰 80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第 三边 81 三角形中位线定理 三角形的
14、中位线平行于第三边,并且等于它 的一半 82 梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的 一半 L= (a+b)÷2 S=L×h 83 (1比例的基本性质 如果 a:b=c:d,那么 ad=bc 如果 ad=bc,那么 a:b=c:d wc 呁/S ? 84 (2合比性质 如果 ab=cd,那么(a±bb=(c±dd 85 (3等比性质 如果 ab=cd=mn(b+d+n0,那么 (a+c+m(b+d+n=ab 86 平行线分线段成比例定理 三条平行线截两条直线,所得的对应 线段成比例 87 推论 平行于三角形一边的直线截其他两边(或两边的
15、延长线) ,所得的对应 线段成比例 88 定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比 第 6 页 北京四中网校 例,那么这条直线平行于三角形的第三边 89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边 与原三角形三边对应成比例 90 定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成 的三角形与原三角形相似 91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA) 92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似 93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS) 94 判定定理3 三边对应
16、成比例,两三角形相似(SSS) 95 定理 如果一个直角三角形的斜边和一条直角边与另一个直角三 角形的斜边 和一条直角边对应成比例,那么这两个直角三角形相似 96 性质定理1 相似三角形对应高的比, 对应中线的比与对应角平 分线的比都等 于相似比 97 性质定理2 相似三角形周长的比等于相似比 98 性质定理3 相似三角形面积的比等于相似比的平方 99 任意锐角的正弦值等于它的余角的余弦值, 任意锐角的余弦值等 于它的余角 的正弦值 100任意锐角的正切值等于它的余角的余切值, 任意锐角的余切值等 于它的余角 的正切值 101圆是定点的距离等于定长的点的集合 102圆的内部可以看作是圆心的距离
17、小于半径的点的集合 103圆的外部可以看作是圆心的距离大于半径的点的集合 104同圆或等圆的半径相等 105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半 径的圆 106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直 平分线 107到已知角的两边距离相等的点的轨迹,是这个角的平分线 108到两条平行线距离相等的点的轨迹, 是和这两条平行线平行且距 离相等的一 条直线 109定理 不在同一直线上的三点确定一个圆。 第 7 页 北京四中网校 110垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧 111推论1 平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧 弦的垂直平分线经过圆心,并且平分弦所对的两条弧 平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 112推论2 圆的两条平行弦所夹的弧相等 113圆是以圆心为对称中心的中心对称图形 114定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦 相等,所对 的弦的弦心距相等 115推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年广东省茂名市直属学校数学三上期末学业质量监测试题含解析
- 2024年东营市数学三上期末综合测试模拟试题含解析
- 基层管理效能提升路径研究
- 筑牢供水安全防线 护航群众健康生活-供水安全生产培训
- 2025年罐头项目合作计划书
- 2025年钢包精炼成套设备项目发展计划
- 江苏省苏州市2024-2025学年第二学期七年级英语5月月考模拟卷(06)(含解析)
- 2025年高性能纤维超细纤维项目合作计划书
- 2024-2025学年度浙江省温州市鹿城区中考英语二模试卷(含答案)
- 2025年纤维纺制线、绳、索、缆项目发展计划
- 常用急救药品的剂量与用法课件
- 自动控制原理-复习题及答案
- SAP固定资产各种折旧方法配置及操作手册
- 奥数举一反三简单推理
- 高中英语教师研修-罗马建筑文化课件
- 货物验收单(模板)
- 沪科版七年级下学期数学竞赛测试卷(含答案)
- 复旦大学大学生创业导论课件06创业的商业计划书
- 发证机关所在地区代码表
- 医疗纠纷和解协议书(6篇)
- 农村不动产权籍调查工作指南
评论
0/150
提交评论