版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、?圆?章节知识点复习名词解释:1.弦连接圆上任意两点的线段叫做弦。2.弧圆上任意两点间的局部叫做圆弧,简称弧。3.半圆圆的任意一条直径的两个端点把圆分成两条弧,第一条弧都叫做半圆。4.等圆能够重合的两个圆叫做等圆。5.等弧在同圆或等圆中,能够互相重合的弧叫做等弧。6.圆心角顶点在圆心的角叫做圆心角。7.圆周角顶点在圆上,且两边都与圆相交的角叫做圆周角。8.圆内接多边形如果一个多边形的所有顶点都在同一个圆上,这个多边形叫做圆内接多边形,这个圆叫做这个多边形的外接圆。9.外心外接圆的圆心是三角形三条边垂直平分线的交点,叫做这个三角形外心。10.内心三角形三条角平分线的交点,叫做三角形的内心。11.
2、内切圆与三角形各边相切的圆叫做三角形的内切圆。12.割线直线和圆有两个公共点直线和圆相交,这条直线叫做圆的割线。13.切线直线和圆只有一个公共点直线和圆相切,这条直线叫做圆的切线,这个点叫做切点。14.切线长经边圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长。15.圆心距两个圆圆心的距离叫做圆心距。16.中心正多边形的外接圆的圆心叫做这个正多边形的中心。17.中心角正多边形每一边所对的圆心角叫做正多边形的中心角。18.边心距中心到正多边形的一边的距离叫做正多边形的边心距。19.扇形由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形。20.母线连接圆锥顶点和底面圆周上
3、任意一点的线段叫做圆锥的母线。一、圆的概念集合形式的概念: 1、圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线也叫中垂线;补充3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直
4、线距离都相等的一条直线。二、点与圆的位置关系1、点在圆内 点在圆内;2、点在圆上 点在圆上;3、点在圆外 点在圆外;三、直线与圆的位置关系1、直线与圆相离 无交点;2、直线与圆相切 有一个交点;3、直线与圆相交 有两个交点;四、圆与圆的位置关系外离图1 无交点 ;外切图2 有一个交点 ;相交图3 有两个交点 ;内切图4 有一个交点 ;内含图5 无交点 ; 五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。推论1:1平分弦不是直径的直径垂直于弦,并且平分弦所对的两条弧;2弦的垂直平分线经过圆心,并且平分弦所对的两条弧;3平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上
5、共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即: 是直径 弧弧 弧弧中任意2个条件推出其他3个结论。推论2:圆的两条平行弦所夹的弧相等。 即:在中, 弧弧六、圆心角定理圆心角定理:同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等。 此定理也称1推3定理,即上述四个结论中,只要知道其中的1个相等,那么可以推出其它的3个结论,即:; ; 弧弧七、圆周角定理1、圆周角定理:同弧所对的圆周角等于它所对的圆心的角的一半。即:和是弧所对的圆心角和圆周角 2、圆周角定理的推论:推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧是
6、等弧;即:在中,、都是所对的圆周角 推论2:半圆或直径所对的圆周角是直角;圆周角是直角所对的弧是半圆,所对的弦是直径。即:在中,是直径 或 是直径推论3:假设三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。即:在中, 是直角三角形或注:此推论实是初二年级几何中矩形的推论:在直角三角形中斜边上的中线等于斜边的一半的逆定理。八、圆内接四边形圆的内接四边形定理:圆的内接四边形的对角互补,外角等于它的内对角。 即:在中, 四边形是内接四边形 九、切线的性质与判定定理1切线判定定理:过半径外端且垂直于半径的直线是切线; 两个条件:过半径外端且垂直半径,二者缺一不可 即:且过半径外端 是的切
7、线2性质定理:切线垂直于过切点的半径如上图推论1:过圆心垂直于切线的直线必过切点。推论2:过切点垂直于切线的直线必过圆心。以上三个定理及推论也称二推一定理:即:过圆心;过切点;垂直切线,三个条件中知道其中两个条件就能推出最后一个。十、切线长定理切线长定理: 从圆外一点引圆的两条切线,它们的切线长相等,这点和圆心的连线平分两条切线的夹角。即:、是的两条切线 平分推论1:圆的外切四边形的两组对边的和相等十一、圆幂定理1相交弦定理:圆内两弦相交,交点分得的两条线段的乘积相等。即:在中,弦、相交于点,2推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项。即:在中,直径, 3切割
8、线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。即:在中,是切线,是割线 4割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等如上图。即:在中,、是割线5弦切角定理:弦切角等于它所夹的弧对的圆周角推论1:如果两个弦切角所夹的弧相等,那么这两个弦切角也相等十二、两圆公共弦定理圆公共弦定理:两圆圆心的连线垂直并且平分这两个圆的的公共弦。如图:垂直平分。即:、相交于、两点 垂直平分十三、圆的公切线两圆公切线长的计算公式:1外公切线长:CD2 = L2 + (R-r)22内公切线长:AB2 = L2 + (R+r)2十四、圆内正多边
9、形的计算定理:把圆分成n(n3): 依次连结各分点所得的多边形是这个圆的内接正n边形经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形推论1:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆推论2:正n边形的每个内角都等于n-2×180°n 推论3:正n边形的半径和边心距把正n边形分成2n个全等的直角三角形推论4:正n边形的面积Sn=pnrn2 p表示正n边形的周长推论5:如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k (n-2)180°n=360°化为n-2(k-2)=4 特例:1正三角形 在中是正三角形,有关计算在中进行:;正三角形面积3a24 ,a表示边长2正四边形同理,四边形的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 镇中心小学财务制度
- 安全管理财务制度
- 义工团队财务制度
- 资产管理子公司财务制度
- 奶制品工厂财务制度
- 分行业企业财务制度
- 农村幸福院无纠纷调处制度
- 关于严格执行招标投标法规制度
- 公司安保巡逻制度
- 机构销售策划活动方案(3篇)
- 江苏省南通市如皋市创新班2025-2026学年高一上学期期末数学试题+答案
- 2026年年长租公寓市场分析
- 生态环境监测数据分析报告
- 2025年下半年四川成都温江兴蓉西城市运营集团有限公司第二次招聘人力资源部副部长等岗位5人考试参考试题及答案解析
- 煤炭装卸施工方案(3篇)
- 安徽省蚌埠市2024-2025学年高二上学期期末考试 物理 含解析
- 八年级历史上册小论文观点及范文
- 重庆康德卷2025-2026学年高一数学第一学期期末达标检测试题含解析
- 浙江省杭州市萧山区2024-2025学年六年级上学期语文期末试卷(含答案)
- 文旅智慧景区项目分析方案
- 设备隐患排查培训
评论
0/150
提交评论