机器人学导论第4章1_第1页
机器人学导论第4章1_第2页
机器人学导论第4章1_第3页
机器人学导论第4章1_第4页
机器人学导论第4章1_第5页
已阅读5页,还剩28页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第第4 4章章 力分析及柔顺控制力分析及柔顺控制学习内容:学习内容:1 动力学分析动力学分析 2 静力学分析静力学分析 3 坐标系间力和力矩的变换坐标系间力和力矩的变换 4 柔顺控制柔顺控制学习重点:学习重点:1 动力学方程的简化动力学方程的简化 2 柔顺坐标系柔顺坐标系 为了使物体加速必须对其施加力,使旋转物体为了使物体加速必须对其施加力,使旋转物体产生角加速度必须对其施加力矩,所施加力、力产生角加速度必须对其施加力矩,所施加力、力矩大小为:矩大小为:amFIT 为使机器人连杆加速,驱动器必须有足够大为使机器人连杆加速,驱动器必须有足够大的力、力矩驱动机器人连杆和关节,以使他们能的力、力矩驱

2、动机器人连杆和关节,以使他们能以期望的加速度和速度运动。为此,必须计算每以期望的加速度和速度运动。为此,必须计算每个驱动器所需的驱动力。设计者可根据这些方程个驱动器所需的驱动力。设计者可根据这些方程并考虑机器人外部载荷计算出驱动器可能承受的并考虑机器人外部载荷计算出驱动器可能承受的最大载荷,并进而设计出能够提供足够力及力矩最大载荷,并进而设计出能够提供足够力及力矩的驱动器。的驱动器。 事实上,除最简单情况外,求解全部机器人动事实上,除最简单情况外,求解全部机器人动力学方程是不可能的。一般只需求解用这些方程确力学方程是不可能的。一般只需求解用这些方程确定出必要的力、力矩,以便在机器人连杆上产生期

3、定出必要的力、力矩,以便在机器人连杆上产生期望的速度、加速度。望的速度、加速度。 拉格朗日方程是基于能量对系统变量及时间拉格朗日方程是基于能量对系统变量及时间微分的。简单情况比牛顿力学烦琐,随着系统复微分的。简单情况比牛顿力学烦琐,随着系统复杂程度的增加,运用该方程将变得简单。杂程度的增加,运用该方程将变得简单。4.1 拉格朗日方程拉格朗日方程PKL 式中:式中:L是拉格朗日函数,是拉格朗日函数,K是系统动能,是系统动能,P是是系统势能。系统势能。iiixLxLtFiiiLLtT 式中:式中:F是所有线运动外力之和,是所有线运动外力之和,T是所有转是所有转动外力矩之和,动外力矩之和,x 是系统

4、变量。是系统变量。 例例4.1 分别用拉格朗日方程及牛顿方程推倒如图分别用拉格朗日方程及牛顿方程推倒如图所示的单自由度系统的力和加速度关系。所示的单自由度系统的力和加速度关系。222121xmmvK221kxP 222121kxxmPKLxmxLxmxmdtd )(kxxL于是,小车的运动方程为:于是,小车的运动方程为:kxxmF 用牛顿方程:用牛顿方程: maFmakxFkxmaF 机械手和环境之间的接触将在接触处产生相互机械手和环境之间的接触将在接触处产生相互作用的力和力矩。每个机械手的关节运动都是由各作用的力和力矩。每个机械手的关节运动都是由各自的执行装置驱动的。相应的关节输入力矩,经手

5、自的执行装置驱动的。相应的关节输入力矩,经手臂的连杆传送到抓具,并在抓具处引起对环境的力臂的连杆传送到抓具,并在抓具处引起对环境的力和力矩。和力矩。 对于象焊接、喷漆、搬运等工作,通常只需要对于象焊接、喷漆、搬运等工作,通常只需要单纯的位姿控制;而如装配、切割、研磨、打毛刺、单纯的位姿控制;而如装配、切割、研磨、打毛刺、擦玻璃等作业,机器人的末端工具需要与被操作的擦玻璃等作业,机器人的末端工具需要与被操作的物体或环境接触,通过相互之间的作用力完成一定物体或环境接触,通过相互之间的作用力完成一定的作业,对于这些工作,只采用位姿控制是不够的,的作业,对于这些工作,只采用位姿控制是不够的,因为微小的

6、误差可能使工具与环境脱离接触或产生因为微小的误差可能使工具与环境脱离接触或产生很大的相互作用力。这时的控制就易采用柔顺方法。很大的相互作用力。这时的控制就易采用柔顺方法。 即在易使工具与环境脱离接触或产生很大作用即在易使工具与环境脱离接触或产生很大作用力的方向采用柔顺控制。其方法是:假想在此方向,力的方向采用柔顺控制。其方法是:假想在此方向,末端刚度很低,对其采用力控制。末端刚度很低,对其采用力控制。4.2 力和力矩分析力和力矩分析4.2.1 力和力矩的平衡力和力矩的平衡 这一节推导表示机械手静力学特性的基本方这一节推导表示机械手静力学特性的基本方程。我们首先考虑在开环运动链上的一个单独连程。

7、我们首先考虑在开环运动链上的一个单独连接的自由实体的图形。图接的自由实体的图形。图4-1表示作用在连杆表示作用在连杆i上上的力和力矩。连杆的力和力矩。连杆i通过关节通过关节i+1与连杆与连杆i-1和连杆和连杆i+1连接起来。用连接起来。用 表示第表示第i-1连杆作用在第连杆作用在第i连连杆上的力,也就是作用在杆上的力,也就是作用在 坐标系原点坐标系原点 Oi-1 上的作用力。上的作用力。i , 1 - if1i1i1i1izyxO 同样,同样, 表示连杆表示连杆i作用在连杆作用在连杆i+1上的作用上的作用力,那么连杆力,那么连杆i+1对连杆对连杆i的作用力就可由的作用力就可由 给给出。出。 表

8、示作用在重心表示作用在重心Ci的重力,的重力,mi为连杆为连杆i的质的质量,而量,而g是是31的重力加速度矢量。根据力的平衡的重力加速度矢量。根据力的平衡原理有原理有1i , if1iif,gmi(4.1) n ,1,i 0gmffi1i , ii , 1i其中所有矢量都是表示在基坐标系其中所有矢量都是表示在基坐标系 中。中。0000zyxO 图图4-2 作用在连杆作用在连杆i上的力和力矩上的力和力矩 下面研究力矩的平衡情况。由连杆下面研究力矩的平衡情况。由连杆i-1施加在连施加在连杆杆i上的力矩用上的力矩用Ni-1,i来表示,因此,由连杆来表示,因此,由连杆i+1施施加给连杆加给连杆i的力矩

9、是的力矩是-Ni-1,i,同时,力,同时,力fi-1,i和和- fi-1,i 也也会对重心会对重心Ci产生力矩。因而相对于重心产生力矩。因而相对于重心Ci的力矩的力矩平衡式为:平衡式为:(4.2)n ,1,i 0)fr(f)rr (NN1i , ic , ii , 1ic , ii , 1i1i , ii , 1iii () 这里这里ri-1,i是从是从Oi-1到到Oi的的31位置矢量,而位置矢量,而ri,ci表示从表示从Oi到到Ci的位置矢量。力的位置矢量。力fi-1,i和力矩和力矩Ni-1,i是相邻连杆是相邻连杆i和和i-1之间的耦合力和力矩。之间的耦合力和力矩。 当当i=1时,耦合力时,

10、耦合力f0,1和力矩和力矩N0,1和可解释为基和可解释为基座对手臂的作用力和力矩座对手臂的作用力和力矩(见图见图4-2(a)。 当当i=n时,耦合力和力矩为时,耦合力和力矩为fn,n+1和和Nn,n+1,如图,如图4-2(b)所示。当抓具所示。当抓具(即连杆即连杆n)与环境接触时,这与环境接触时,这个作用力和力矩的反作用力和力矩就作用于最后个作用力和力矩的反作用力和力矩就作用于最后一个连杆。一个连杆。 为了方便,我们把环境考虑为附加的连杆为了方便,我们把环境考虑为附加的连杆n+1,而用而用-fn,n+1和和Nn,n+1分别表示连杆分别表示连杆n+1对连杆对连杆n的作的作用力和力矩。用力和力矩。

11、 图图4-3 基基座和环境座和环境所施加的所施加的力和力矩力和力矩 上述方程上述方程(4.1)和和(4.2)适用于除基座外的全部连杆。适用于除基座外的全部连杆。这样总的矢量方程个数为这样总的矢量方程个数为2n,而其中包含的耦合力,而其中包含的耦合力和力矩是和力矩是2(n+1)个。因此,有两个耦合力和力矩必个。因此,有两个耦合力和力矩必须给定,否则便不能解出该方程组。末端的耦合力须给定,否则便不能解出该方程组。末端的耦合力fn,n+1和耦合力矩和耦合力矩Nn,n+1是机械手对环境施加的力和力是机械手对环境施加的力和力矩。为了完成一定的作业,机械手必须施加一定的矩。为了完成一定的作业,机械手必须施

12、加一定的力和力矩。因此,我们认为这个耦合力和力矩是给力和力矩。因此,我们认为这个耦合力和力矩是给定的,从而可解出以上定的,从而可解出以上2n个方程。为了方便,我们个方程。为了方便,我们把把fn,n+1和和Nn,n+1写成下面一个写成下面一个6维矢量维矢量1n ,n1n ,nNfF我们称我们称F为末端力和力矩矢量,简称末端力。为末端力和力矩矢量,简称末端力。(4.3)4.2.2 等效关节力矩等效关节力矩 对于由执行装置施加的力矩与引起的末端力对于由执行装置施加的力矩与引起的末端力之间的函数关系。假定,每个关节由独立的执行之间的函数关系。假定,每个关节由独立的执行装置驱动,执行装置在相邻连杆之间施

13、加一个驱装置驱动,执行装置在相邻连杆之间施加一个驱动力矩或者力,设动力矩或者力,设 是驱动关节是驱动关节i的驱动力矩或力。的驱动力矩或力。 对于滑移关节,驱动力对于滑移关节,驱动力 是沿第是沿第i关节轴的关节轴的方向(即方向(即i-1坐标系的坐标系的zi-1轴方向),见图轴方向),见图4-3。假。假设关节的机械特性是光滑的,即没有摩擦,这样设关节的机械特性是光滑的,即没有摩擦,这样就可以把连杆就可以把连杆i-1和连杆和连杆i之间的耦合力之间的耦合力fi-1,i与关节与关节力力 联系起来,其关系为联系起来,其关系为iiii1,- iT1ifbi(4.4) 这里这里bi-1表示指向关节轴表示指向关

14、节轴i方向的单位矢量。而方向的单位矢量。而aTb表示矢量表示矢量a和和b的内积。方程的内积。方程(4.4)意味着执行意味着执行装置承受的仅仅是装置承受的仅仅是fi-1,i沿关节轴方向的分量,而其沿关节轴方向的分量,而其它方向上的分量都是由关节结构承受,这些耦合它方向上的分量都是由关节结构承受,这些耦合力分量是内部的约束力,它们不做功。力分量是内部的约束力,它们不做功。 对于旋转关节,对于旋转关节, 表示驱动力矩。这个驱动力表示驱动力矩。这个驱动力矩与沿关节轴矩与沿关节轴i方向的耦合力矩方向的耦合力矩Ni-1,i的分量平衡的分量平衡 ii1,- iT1iNb 其它的耦合力矩其它的耦合力矩Ni-1

15、,i的分量由关节结构承受,的分量由关节结构承受,它们是无功的约束力矩。它们是无功的约束力矩。i(4.5)图图4-4 滑移关节的耦合力和关节力滑移关节的耦合力和关节力 我们把全部关节力和关节力矩合在一起定义我们把全部关节力和关节力矩合在一起定义n维维向量为向量为 n1(4.6) 我们称我们称 为关节力矩或力的矢量,或简称关节为关节力矩或力的矢量,或简称关节力矩。关节力矩表示执行装置对手臂连杆的输入力力矩。关节力矩表示执行装置对手臂连杆的输入力矩。下面的定理给出了关节力矩矩。下面的定理给出了关节力矩 和末端力矢量和末端力矢量F之间的关系。之间的关系。 定理定理 假设关节机械无摩擦,那么为产生任意假

16、设关节机械无摩擦,那么为产生任意的末端力的末端力F所需的关节力矩所需的关节力矩 为为FJT 这里这里J为为6n雅可比矩阵。它联系着关节的微雅可比矩阵。它联系着关节的微分位移分位移dq和抓具的微分位移和抓具的微分位移ds,即,即ds= J dq 在上述(在上述(4.7)式中,关节力矩中不包括重力)式中,关节力矩中不包括重力矩或任何其它力矩。它们是与末端力和力矩平衡矩或任何其它力矩。它们是与末端力和力矩平衡的净力矩。我们称方程(的净力矩。我们称方程(4.7)的)的 为与末端力为与末端力F对应的等效力矩。对应的等效力矩。(4.7)4.3.1 柔顺坐标系的建立柔顺坐标系的建立 为了便于描述柔顺运动的任

17、务及对其进行控为了便于描述柔顺运动的任务及对其进行控制,需要定义一种新的正交坐标系,我们称它为制,需要定义一种新的正交坐标系,我们称它为柔顺坐标系柔顺坐标系(compliance frame),有时也称之为,有时也称之为任务坐标系或作业坐标系任务坐标系或作业坐标系(task frame)。在该坐标。在该坐标系中,任务可以被描述成沿各个坐标轴的位置控系中,任务可以被描述成沿各个坐标轴的位置控制和力的控制。对于其中的任何一个方向的自由制和力的控制。对于其中的任何一个方向的自由度度(沿三个正交轴的移动和绕三个轴的旋转沿三个正交轴的移动和绕三个轴的旋转),或者或者要求是力的控制,或者是位置的控制,不可

18、能在要求是力的控制,或者是位置的控制,不可能在同一个自由度既进行力的控制,又进行位置的控同一个自由度既进行力的控制,又进行位置的控制,二者必居其一制,二者必居其一 。4. 3 柔顺运动控制的基本概念和方法柔顺运动控制的基本概念和方法(1) 黑板上写字:这时柔顺坐标系的选择如图黑板上写字:这时柔顺坐标系的选择如图4-4所所示示.其中黑板平面即为柔顺坐标系的其中黑板平面即为柔顺坐标系的XcYc平面,平面,Zc轴垂直于黑板平面轴垂直于黑板平面,坐标原点坐标原点Oc可以选为黑板上固可以选为黑板上固定的某一点,这时柔顺坐标系相对基坐标是固定定的某一点,这时柔顺坐标系相对基坐标是固定的。也可以选的。也可以

19、选Oc为粉笔与黑板的接触点,这时柔为粉笔与黑板的接触点,这时柔顺坐标系是时不变的,它与基坐标系及抓手坐标顺坐标系是时不变的,它与基坐标系及抓手坐标系均无固定的关系。系均无固定的关系。图图4-4 黑板上写字黑板上写字 当机械手向黑板移动而尚未接触到黑板时,这当机械手向黑板移动而尚未接触到黑板时,这时时6个自由度均为位置控制。由于这时机械手末端个自由度均为位置控制。由于这时机械手末端在空间是自由的,无任何反作用,因此无力的自在空间是自由的,无任何反作用,因此无力的自由度。当粉笔接触到黑板时,这时沿由度。当粉笔接触到黑板时,这时沿Zc轴方向朝轴方向朝黑板的进一步运动受到限制,也即该方向的位置黑板的进

20、一步运动受到限制,也即该方向的位置的自由度没有了,而代之以力的自由度,也就是的自由度没有了,而代之以力的自由度,也就是说这时可以控制沿说这时可以控制沿Zc轴方向的压力。如果粉笔被轴方向的压力。如果粉笔被完全粘在黑板上完全粘在黑板上,它既不能移动也不能转动,这时它既不能移动也不能转动,这时只有力和力矩的自由度,而无任何位置的自由度。只有力和力矩的自由度,而无任何位置的自由度。(2)销钉插孔,如图销钉插孔,如图4-5所示。在例中,柔顺坐标系所示。在例中,柔顺坐标系坐标系固定在销钉上,其原点在销钉轴上,坐标系固定在销钉上,其原点在销钉轴上,Zc轴与轴与销钉的中心轴相重合。这里沿着销钉的中心轴相重合。

21、这里沿着Zc轴方向的移动及轴方向的移动及绕着绕着Zc轴的转动需要位置控制,而其余的自由度均轴的转动需要位置控制,而其余的自由度均为力或力矩控制。若抓手与销钉之间无相对运动,为力或力矩控制。若抓手与销钉之间无相对运动,则柔顺坐标系与抓手坐标系的关系是固定的。则柔顺坐标系与抓手坐标系的关系是固定的。图图4-5销钉插孔销钉插孔(3)拧螺钉:如图拧螺钉:如图4-6所示。这时柔顺坐标系固定在所示。这时柔顺坐标系固定在螺钉上,原点螺钉上,原点Oc在螺钉的轴线上,在螺钉的轴线上,Zc轴与螺钉轴轴与螺钉轴重合。该柔顺坐标系与基坐标系及抓手坐标系均无重合。该柔顺坐标系与基坐标系及抓手坐标系均无固定的关系,而和被

22、操作的物体具有固定的关系。固定的关系,而和被操作的物体具有固定的关系。在该例中,绕在该例中,绕Zc轴的转动及沿轴的转动及沿Yc 方向的移动需要方向的移动需要进行位置控制,而其余自由度均需进行力的控制进行位置控制,而其余自由度均需进行力的控制 。图图4-6 拧螺钉拧螺钉(4)转动曲柄:如图转动曲柄:如图4-7所示。这时柔顺坐标系放置所示。这时柔顺坐标系放置在曲柄的摇把上,在曲柄的摇把上,Zc轴与摇把的轴重合,轴与摇把的轴重合,Xc轴指向轴指向曲柄的中心轴。这时绕着曲柄的中心轴。这时绕着Zc轴的旋转及沿轴的旋转及沿Yc轴的移轴的移动需要进行位置控制,所有其它自由度均需进行力动需要进行位置控制,所有

23、其它自由度均需进行力的控制。在该例中,柔顺坐标系固定在曲柄上,因的控制。在该例中,柔顺坐标系固定在曲柄上,因而相对基坐标系或抓手坐标系却是不固定的而相对基坐标系或抓手坐标系却是不固定的 。图图4-7 转动曲柄转动曲柄(5)关门:如图关门:如图4-8所示。这时柔顺坐标系的原点放所示。这时柔顺坐标系的原点放在门的铰链轴上,在门的铰链轴上,Zc轴与铰链轴重合,轴与铰链轴重合,Xc轴与门轴与门的法线方向一致,该坐标系随门的转动而转动。这的法线方向一致,该坐标系随门的转动而转动。这时除绕时除绕Zc轴的旋转需进行位置控制外,其余自由轴的旋转需进行位置控制外,其余自由度均需进行力的控制度均需进行力的控制 。

24、图图4-8 关门关门 通过以上例子可以看出,柔顺坐标系具有以下几通过以上例子可以看出,柔顺坐标系具有以下几个特点:个特点: (1) 柔顺坐标系是正交坐标系,利用它便于描述作柔顺坐标系是正交坐标系,利用它便于描述作业任务;业任务; (2) 一般来说,柔顺坐标系是时变的。但根据作业一般来说,柔顺坐标系是时变的。但根据作业任务的不同,它可以是下面几种情况的一种:任务的不同,它可以是下面几种情况的一种: (a)柔顺坐标系相对基坐标系是固定的。如在黑板柔顺坐标系相对基坐标系是固定的。如在黑板上写字上写字(图图4-4)时将其固定在黑板上的情况;时将其固定在黑板上的情况; (b)柔顺坐标系相对于机械手末端的

25、工具是固定的。柔顺坐标系相对于机械手末端的工具是固定的。如销钉插孔如销钉插孔(图图4-5)时将柔顺坐标系固定在销钉上;时将柔顺坐标系固定在销钉上; (c)柔顺坐标系相对于被操作的物体是固定的。如柔顺坐标系相对于被操作的物体是固定的。如拧螺钉拧螺钉(图图4-6)、转动曲柄、转动曲柄(图图4-7)及关门及关门(图图4-8)等情等情况;况; (d) 与任何预先定义的坐标系均无固定的关系。如与任何预先定义的坐标系均无固定的关系。如在黑板上写字在黑板上写字(图图4-4)时坐标原点随接触点移动的情况。时坐标原点随接触点移动的情况。4.3.2 自然约束和人为约束自然约束和人为约束 在建立柔顺坐标系时已经说到

26、,柔顺坐标系的每在建立柔顺坐标系时已经说到,柔顺坐标系的每个自由度或是位置控制,或是力控制,两者必居其个自由度或是位置控制,或是力控制,两者必居其一。这说明,当某个自由度是位置的自由度时,它一。这说明,当某个自由度是位置的自由度时,它必然受到力的约束,因此只能对它进行位置的控制,必然受到力的约束,因此只能对它进行位置的控制,而不能进行力的控制。反之亦然。这种位置和力的而不能进行力的控制。反之亦然。这种位置和力的控制的对偶关系可以通过自然约束(控制的对偶关系可以通过自然约束(natural constraints)和人为约束()和人为约束(artificial constraits)这两个术语来

27、描述。自然约束是由任务的几何结构这两个术语来描述。自然约束是由任务的几何结构所确定的约束关系。人为约束则是根据任务的要求所确定的约束关系。人为约束则是根据任务的要求人为给定的期望的运动和力。下面对前面已列举的人为给定的期望的运动和力。下面对前面已列举的5个例子给出具体的分析。个例子给出具体的分析。(1)黑板上写字(图)黑板上写字(图4-4) :由于黑板的存在,:由于黑板的存在,沿轴方向的位置受到限制,这是自然约束。如果假沿轴方向的位置受到限制,这是自然约束。如果假定粉笔与黑板之间是无摩擦的,那么沿黑板切线方定粉笔与黑板之间是无摩擦的,那么沿黑板切线方向的力必须为零,从而向的力必须为零,从而fz

28、=0和和fy=0也是两个自然约也是两个自然约束。绕三个轴也存在反抗力矩,因此束。绕三个轴也存在反抗力矩,因此mx=0、my=0和和mz=0是另外三个自然约束。认为约束包括沿是另外三个自然约束。认为约束包括沿xc、yc方向的期望的运动。最后归纳得到如下的结果:方向的期望的运动。最后归纳得到如下的结果:. 0, 0, 0, 0, 0, 0zyxxyxmmmvff. 0, 0, 0,zyxdzzdyydxxwwwffvvvv自然约束:自然约束:人为约束:人为约束: 在上面的约束中,所以关于位置的约束均用速在上面的约束中,所以关于位置的约束均用速度来表示。它比直接用位置表示更加明确,尤其度来表示。它比

29、直接用位置表示更加明确,尤其是饶各个轴转动的情况更是如此。对于每一个自是饶各个轴转动的情况更是如此。对于每一个自由度来说,如果其位置是自然约束,那么力必然由度来说,如果其位置是自然约束,那么力必然是人为约束:或者若力是自然约束,则相应的位是人为约束:或者若力是自然约束,则相应的位置必然为人为约束。因此,自然约束和人为约束置必然为人为约束。因此,自然约束和人为约束的数目均等于柔顺坐标系的自由度数(一般为的数目均等于柔顺坐标系的自由度数(一般为6)。)。 (2)销钉插孔(图)销钉插孔(图4-5)按照与上面相类似的分)按照与上面相类似的分析,可以列出该例中的自然约束和人为约束为:析,可以列出该例中的

30、自然约束和人为约束为:0, 0, 0, 0, 0, 0zyxzyxmfvv0, 0, 0, 0, 0zyxdzzyxmmvvff自然约束:自然约束:人为约束:人为约束:0, 0, 0, 0, 0zyxdzxyxmvfvdzzyxdzzyxmmffvf, 0, 0, 0, 00, 0, 0, 0, 0, 0zyxzyxmvfvdzzyxzdyyxmmfvvf, 0, 0, 0, 00, 0, 0, 0, 0,zyxzydzxmvvrvdzzyxzyxmmfff, 0, 0, 0, 0, 0(3)拧螺钉(图)拧螺钉(图4-6)自然约束:自然约束:自然约束:自然约束:自然约束:自然约束:人为约束:人

31、为约束:人为约束:人为约束:人为约束:人为约束:(4)转动曲柄(图)转动曲柄(图4-7)(5)关门(图)关门(图4-8)4.3.3 被动柔顺和主动柔顺被动柔顺和主动柔顺 为了能在黑板上用粉笔写字或将销为了能在黑板上用粉笔写字或将销钉插入孔中,可以在机械手末端安装钉插入孔中,可以在机械手末端安装包括有弹簧和阻尼的机械装置。这样包括有弹簧和阻尼的机械装置。这样可以使机械手具有柔顺功能。这样获可以使机械手具有柔顺功能。这样获得的柔顺功能称为被动柔顺(得的柔顺功能称为被动柔顺(passive compliance)。图)。图4-9所示为一典型的被所示为一典型的被动柔顺装置,通常称它为动柔顺装置,通常称它为RCC(Remote Center Compliance)。该装置可以使得销钉。该装置可以使得销钉的末端成为柔顺中心。的末端成为柔顺中心。 柔顺中心是指对该点施加纯粹的力柔顺中心是指对该点施加纯粹的力将产生该力方向的位移,若在该点施将产生该力方向的位移,若在该点施加纯粹的力矩将产生该力矩方向的旋加纯粹的力矩将产生该力矩方向的旋转。转。图图4-9 具有具有RCC的的柔顺手腕柔顺手腕 被动柔顺装置具有响应快速、成本低廉等优点。被动柔顺装置具有响应快速、成本低廉等优点。但是它的应用受到一定限制。它主要应用于某些但是它的应用受到一定限制。它主

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论