版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目
2、要求的。1在边长为2的菱形中,将菱形沿对角线对折,使二面角的余弦值为,则所得三棱锥的外接球的表面积为( )ABCD2公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”,利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值,这就是著名的“徽率”。如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出的值为( )(参考数据: )A48B36C24D123若复数()在复平面内的对应点在直线上,则等于( )ABCD4函数y=sin2x的图象可能是ABCD5已知函数,.若存在,使得成立,则的最大值为( )ABCD6已知函数,则的极
3、大值点为( )ABCD7如果实数满足条件,那么的最大值为( )ABCD8已知x,y满足不等式,且目标函数z9x+6y最大值的变化范围20,22,则t的取值范围( )A2,4B4,6C5,8D6,79一个正三角形的三个顶点都在双曲线的右支上,且其中一个顶点在双曲线的右顶点,则实数的取值范围是( )ABCD10已知双曲线:的左右焦点分别为,为双曲线上一点,为双曲线C渐近线上一点,均位于第一象限,且,则双曲线的离心率为( )ABCD11已知点是双曲线上一点,若点到双曲线的两条渐近线的距离之积为,则双曲线的离心率为( )ABCD212已知正方体的体积为,点,分别在棱,上,满足最小,则四面体的体积为 A
4、BCD二、填空题:本题共4小题,每小题5分,共20分。13角的顶点在坐标原点,始边与轴的非负半轴重合,终边经过点,则的值是 14若、满足约束条件,则的最小值为_.15已知半径为4的球面上有两点A,B,AB=42,球心为O,若球面上的动点C满足二面角C-AB-O的大小为60,则四面体OABC的外接球的半径为_.16如图,某市一学校位于该市火车站北偏东方向,且,已知是经过火车站的两条互相垂直的笔直公路,CE,DF及圆弧都是学校道路,其中,以学校为圆心,半径为的四分之一圆弧分别与相切于点.当地政府欲投资开发区域发展经济,其中分别在公路上,且与圆弧相切,设,的面积为.(1)求关于的函数解析式;(2)当
5、为何值时,面积为最小,政府投资最低?三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知正项数列的前项和.(1)若数列为等比数列,求数列的公比的值;(2)设正项数列的前项和为,若,且.求数列的通项公式;求证:.18(12分)已知函数,.(1)求曲线在点处的切线方程;(2)求函数的单调区间;(3)判断函数的零点个数.19(12分)已知函数.(1)讨论的单调性;(2)若恒成立,求实数的取值范围.20(12分)已知函数.(1)当时,求函数在处的切线方程;(2)若函数没有零点,求实数的取值范围.21(12分)数列满足.(1)求数列的通项公式;(2)设,为的前n项和,求证:.
6、22(10分)在四棱锥中,底面为直角梯形,分别为,的中点(1)求证:(2)若,求二面角的余弦值参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1D【解析】取AC中点N,由题意得即为二面角的平面角,过点B作于O,易得点O为的中心,则三棱锥的外接球球心在直线BO上,设球心为,半径为,列出方程即可得解.【详解】如图,由题意易知与均为正三角形,取AC中点N,连接BN,DN,则,即为二面角的平面角,过点B作于O,则平面ACD,由,可得,即点O为的中心,三棱锥的外接球球心在直线BO上,设球心为,半径为,,解得,三棱锥的外接球的表面积为.故选:D
7、.【点睛】本题考查了立体图形外接球表面积的求解,考查了空间想象能力,属于中档题.2C【解析】由开始,按照框图,依次求出s,进行判断。【详解】 ,故选C.【点睛】框图问题,依据框图结构,依次准确求出数值,进行判断,是解题关键。3C【解析】由题意得,可求得,再根据共轭复数的定义可得选项.【详解】由题意得,解得,所以,所以,故选:C.【点睛】本题考查复数的几何表示和共轭复数的定义,属于基础题.4D【解析】分析:先研究函数的奇偶性,再研究函数在上的符号,即可判断选择.详解:令, 因为,所以为奇函数,排除选项A,B;因为时,所以排除选项C,选D.点睛:有关函数图象的识别问题的常见题型及解题思路:(1)由
8、函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的循环往复5C【解析】由题意可知,由可得出,利用导数可得出函数在区间上单调递增,函数在区间上单调递增,进而可得出,由此可得出,可得出,构造函数,利用导数求出函数在上的最大值即可得解.【详解】,由于,则,同理可知,函数的定义域为,对恒成立,所以,函数在区间上单调递增,同理可知,函数在区间上单调递增,则,则,构造函数,其中,则.当时,此时函数单调递增;当时,此时函数单调递减.所以,.故选:C.【点睛】本题考查代数式最
9、值的计算,涉及指对同构思想的应用,考查化归与转化思想的应用,有一定的难度.6A【解析】求出函数的导函数,令导数为零,根据函数单调性,求得极大值点即可.【详解】因为,故可得,令,因为,故可得或,则在区间单调递增,在单调递减,在单调递增,故的极大值点为.故选:A.【点睛】本题考查利用导数求函数的极值点,属基础题.7B【解析】解:当直线过点时,最大,故选B8B【解析】作出可行域,对t进行分类讨论分析目标函数的最大值,即可求解.【详解】画出不等式组所表示的可行域如图AOB当t2时,可行域即为如图中的OAM,此时目标函数z9x+6y 在A(2,0)取得最大值Z18不符合题意t2时可知目标函数Z9x+6y
10、在的交点()处取得最大值,此时Zt+16由题意可得,20t+1622解可得4t6故选:B【点睛】此题考查线性规划,根据可行域结合目标函数的最大值的取值范围求参数的取值范围,涉及分类讨论思想,关键在于熟练掌握截距型目标函数的最大值最优解的处理办法.9D【解析】因为双曲线分左右支,所以,根据双曲线和正三角形的对称性可知:第一象限的顶点坐标为,将其代入双曲线可解得【详解】因为双曲线分左右支,所以,根据双曲线和正三角形的对称性可知:第一象限的顶点坐标为,将其代入双曲线方程得:,即,由得故选:【点睛】本题考查了双曲线的性质,意在考查学生对这些知识的理解掌握水平10D【解析】 由双曲线的方程的左右焦点分别
11、为,为双曲线上的一点,为双曲线的渐近线上的一点,且都位于第一象限,且,可知为的三等分点,且,点在直线上,并且,则,设,则,解得,即,代入双曲线的方程可得,解得,故选D点睛:本题考查了双曲线的几何性质,离心率的求法,考查了转化思想以及运算能力,双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:求出,代入公式;只需要根据一个条件得到关于的齐次式,转化为的齐次式,然后转化为关于的方程(不等式),解方程(不等式),即可得(的取值范围)11A【解析】设点的坐标为,代入椭圆方程可得,然后分别求出点到两条渐近线的距离,由距离之积为,并结合,可得到的齐次方程,进而
12、可求出离心率的值.【详解】设点的坐标为,有,得.双曲线的两条渐近线方程为和,则点到双曲线的两条渐近线的距离之积为,所以,则,即,故,即,所以.故选:A.【点睛】本题考查双曲线的离心率,构造的齐次方程是解决本题的关键,属于中档题.12D【解析】由题意画出图形,将所在的面延它们的交线展开到与所在的面共面,可得当时最小,设正方体的棱长为,得,进一步求出四面体的体积即可【详解】解:如图,点M,N分别在棱上,要最小,将所在的面延它们的交线展开到与所在的面共面,三线共线时,最小, 设正方体的棱长为,则,取,连接,则共面,在中,设到的距离为,设到平面的距离为,.故选D【点睛】本题考查多面体体积的求法,考查了
13、多面体表面上的最短距离问题,考查计算能力,是中档题二、填空题:本题共4小题,每小题5分,共20分。13【解析】试题分析:由三角函数定义知,又由诱导公式知,所以答案应填:考点:1、三角函数定义;2、诱导公式14【解析】作出不等式组所表示的可行域,利用平移直线的方法找出使得目标函数取得最小时对应的最优解,代入目标函数计算即可.【详解】作出不等式组所表示的可行域如下图所示:联立,解得,即点,平移直线,当直线经过可行域的顶点时,该直线在轴上的截距最小,此时取最小值,即.故答案为:.【点睛】本题考查简单的线性规划问题,考查线性目标函数的最值问题,考查数形结合思想的应用,属于基础题.15463【解析】设A
14、BC所在截面圆的圆心为O1,AB中点为D,连接OD,O1D,易知ODO1即为二面角C-AB-O的平面角,可求出OD,O1D及OO1,然后可判断出四面体OABC外接球的球心E在直线OO1上,在RtO1BE中,O1B2+O1E2=BE2,结合O1B=OB2-OO12,BE=R,O1E=|R-6|,可求出四面体OABC的外接球的半径R.【详解】设ABC所在截面圆的圆心为O1,AB中点为D,连接OD,O1D,OAOB,所以,ODAB,同理O1DAB,所以,ODO1即为二面角C-AB-O的平面角,ODO1=60,因为OA=OB=4,AB=42,所以OAB是等腰直角三角形,OD=22,在RtODO1中,由
15、cos60O1DOD,得O1D=2,由勾股定理,得:OO1=6,因为O1到A、B、C三的距离相等,所以,四面体OABC外接球的球心E在直线OO1上,设四面体OABC外接球半径为R,在RtO1BE中,O1B=OB2-OO12=10,BE=R,O1E=|R-6|,由勾股定理可得:O1B2+O1E2=BE2,即10+(R-6)2=R2,解得R=463【点睛】本题考查了三棱锥的外接球问题,考查了学生的空间想象能力、逻辑推理能力及计算求解能力,属于中档题16(1);(2).【解析】(1)以点为坐标原点建立如图所示的平面直角坐标系,则,在中,设,又,故,进而表示直线的方程,由直线与圆相切构建关系化简整理得
16、,即可表示OA,OB,最后由三角形面积公式表示面积即可;(2)令,则,由辅助角公式和三角函数值域可求得t的取值范围,进而对原面积的函数用含t的表达式换元,再令进行换元,并构建新的函数,由二次函数性质即可求得最小值.【详解】解:(1)以点为坐标原点建立如图所示的平面直角坐标系,则,在中,设,又,故,.所以直线的方程为,即.因为直线与圆相切,所以.因为点在直线的上方,所以,所以式可化为,解得.所以,.所以面积为.(2)令,则,且,所以,.令,所以在上单调递减.所以,当,即时,取得最大值,取最小值.答:当时,面积为最小,政府投资最低.【点睛】本题考查三角函数的实际应用,应优先结合实际建立合适的数学模
17、型,再按模型求最值,属于难题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1);(2);详见解析.【解析】(1)依题意可表示,相减得,由等比数列通项公式转化为首项与公比,解得答案,并由其都是正项数列舍根; (2)由题意可表示,两式相减得,由其都是正项并整理可得递推关系,由等差数列的通项公式即可得答案;由已知关系,表示并相减即可表示递推关系,显然当时,成立,当,时,表示,由分组求和与正项数列性质放缩不等式得证.【详解】解:(1)依题意可得,两式相减,得,所以,因为,所以,且,解得.(2)因为,所以,两式相减,得,即.因为,所以,即.而当时,可得,故,所以对任意的正整数都成
18、立,所以数列是等差数列,公差为1,首项为1,所以数列的通项公式为.因为,所以,两式相减,得,即,所以对任意的正整数,都有.令,而当时,显然成立,所以当,时,所以,即,所以,得证.【点睛】本题考查由前n项和关系求等比数列公比,求等差数列通项公式,还考查了由分组求和表示数列和并由正项数列放缩证明不等式,属于难题.18(1)(2)答案见解析(3)答案见解析【解析】(1)设曲线在点,处的切线的斜率为,可求得,利用直线的点斜式方程即可求得答案;(2)由()知,分时,三类讨论,即可求得各种情况下的的单调区间为;(3)分与两类讨论,即可判断函数的零点个数【详解】(1),设曲线在点,处的切线的斜率为,则,又,
19、曲线在点,处的切线方程为:,即;(2)由(1)知,故当时,所以在上单调递增;当时,;,;的递减区间为,递增区间为,;当时,同理可得的递增区间为,递减区间为,;综上所述,时,单调递增为,无递减区间;当时,的递减区间为,递增区间为,;当时,的递增区间为,递减区间为,;(3)当时,恒成立,所以无零点;当时,由,得:,只有一个零点【点睛】本题考查利用导数研究曲线上某点的切线方程,利用导数研究函数的单调性,考查分类讨论思想与推理、运算能力,属于中档题19(1)当时,在上单调递增;当时,在上单调递减,在上单调递增;当时,在上单调递减,在上单调递增;(2).【解析】(1)对a分三种情况讨论求出函数的单调性;(2)对a分三种情况,先求出每一种情况下函数f(x)的最小值,再解不等式得解.【详解】(1),当时,在上单调递增;当时,在上单调递减,在上单调递增;当时,在上单调递减,在上单调递增.综上:当时,在上单调递增;当时,在上单调递减,在上单调递增;当时,在上单调递减,在上单调递增.(2)由(1)可知:当时,成立.当时,.当时,即.综上.【点睛】本题主要考查利用导数研究函数的单调性和不等式的恒成立问题,意在考查学生对这些知识的理解掌握水平和分析推理能力.20(1).(2)【解析】(1)利用导数的几何意义求解即可;(2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 土石方工程施工动态调整机制
- 医患关系双向温暖文案
- 广州进货话术
- 卫生资格《初级护士》试题含答案
- 数据中心技术培训与提升方案
- 土石方施工与社区关系改善方案
- 中级“模具工”理论试卷与答案
- 2025年采油工高级工考试题库及答案
- 中药生产加工就业前景分析
- 2025秋八年级物理上册第六章质量与密度第3节测量液体和固体的密度习题课件新版新人教版
- 2026年农业科技领域人才选拔与专业技能考核要点解析
- 茶叶对外贸易科普
- 2025年度科室护士长工作总结与2026年工作计划
- TCEC5023-2020电力建设工程起重施工技术规范报批稿1
- 农产品营销策略研究国内外文献综述
- 儿科急诊与急救护理
- 信任价格关系研究-洞察与解读
- DLT 1051-2019电力技术监督导则
- DL∕ T 845.3-2004 电阻测量装置通 用技术条件 第3部分直流电阻测试仪
- 高水平专业群建设报告
- 防洪排涝工程实施性施工组织设计
评论
0/150
提交评论