版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1在O中,已知半径为5,弦AB的长为8,则圆心O到AB的距离为()A3B4C5D62已知点P(a,m),Q(b,n)都在反比例函数y=的图象上,且a0b,则下
2、列结论一定正确的是()Am+n0Bm+n0CmnDmn3如图,用一个半径为6cm的定滑轮带动重物上升,假设绳索(粗细不计)与滑轮之间没有滑动,绳索端点G向下移动了3cm,则滑轮上的点F旋转了( )A60B90C120D454甲、乙两人沿相同的路线由A地到B地匀速前进,A、B两地间的路程为20km他们前进的路程为s(km),甲出发后的时间为t(h),甲、乙前进的路程与时间的函数图象如图所示根据图象信息,下列说法正确的是( )A甲的速度是4km/hB乙的速度是10km/hC乙比甲晚出发1hD甲比乙晚到B地3h5图1图4是四个基本作图的痕迹,关于四条弧、有四种说法:弧是以O为圆心,任意长为半径所画的
3、弧;弧是以P为圆心,任意长为半径所画的弧;弧是以A为圆心,任意长为半径所画的弧;弧是以P为圆心,任意长为半径所画的弧;其中正确说法的个数为()A4B3C2D16cos30的相反数是()ABCD7如果一元二次方程2x2+3x+m=0有两个相等的实数根,那么实数m的取值为()AmBmCm=Dm=8不等式5+2x 1的解集在数轴上表示正确的是( ).ABCD9如图,在55的方格纸中将图中的图形N平移到如图所示的位置,那么下列平移正确的是( )A先向下移动1格,再向左移动1格B先向下移动1格,再向左移动2格C先向下移动2格,再向左移动1格D先向下移动2格,再向左移动2格10已知二次函数的图象如图所示,
4、若,是这个函数图象上的三点,则的大小关系是( )ABCD二、填空题(共7小题,每小题3分,满分21分)11一个凸多边形的内角和与外角和相等,它是_边形12如图,在RtABC中,ACB=90,AC=4,BC=3,点D为AB的中点,将ACD绕着点C逆时针旋转,使点A落在CB的延长线A处,点D落在点D处,则DB长为_13方程3x(x-1)=2(x-1)的根是 14因式分解:9a3bab_15把两个同样大小的含45角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上若AB=,则CD=_16一个三角形的两边长分别为3和6,第三边长是
5、方程x2-10 x+21=0的根,则三角形的周长为_.17如图,将ABC放在每个小正方形的边长为1的网格中,点A,点B,点C均落在格点上(1)计算ABC的周长等于_(2)点P、点Q(不与ABC的顶点重合)分别为边AB、BC上的动点,4PB=5QC,连接AQ、PC当AQPC时,请在如图所示的网格中,用无刻度的直尺,画出线段AQ、PC,并简要说明点P、Q的位置是如何找到的(不要求证明)_三、解答题(共7小题,满分69分)18(10分)如图,O是ABC的外接圆,AE平分BAC交O于点E,交BC于点D,过点E做直线lBC(1)判断直线l与O的位置关系,并说明理由;(2)若ABC的平分线BF交AD于点F
6、,求证:BE=EF;(3)在(2)的条件下,若DE=4,DF=3,求AF的长19(5分)在ABC中,AB=BC=2,ABC=120,将ABC绕着点B顺时针旋转角a(0a90)得到A1BC;A1B交AC于点E,A1C1分别交AC、BC于D、F两点(1)如图1,观察并猜想,在旋转过程中,线段BE与BF有怎样的数量关系?并证明你的结论(2)如图2,当a=30时,试判断四边形BC1DA的形状,并证明(3)在(2)的条件下,求线段DE的长度20(8分)如图,我们把一个半圆和抛物线的一部分围成的封闭图形称为“果圆”,已知分别为“果圆”与坐标轴的交点,直线与“果圆”中的抛物线交于两点(1)求“果圆”中抛物线
7、的解析式,并直接写出“果圆”被轴截得的线段的长;(2)如图,为直线下方“果圆”上一点,连接,设与交于,的面积记为,的面积即为,求的最小值(3)“果圆”上是否存在点,使,如果存在,直接写出点坐标,如果不存在,请说明理由21(10分)已知,ABC中,A=68,以AB为直径的O与AC,BC的交点分别为D,E()如图,求CED的大小;()如图,当DE=BE时,求C的大小22(10分)如图,抛物线经过点A(2,0),点B(0,4).(1)求这条抛物线的表达式;(2)P是抛物线对称轴上的点,联结AB、PB,如果PBO=BAO,求点P的坐标;(3)将抛物线沿y轴向下平移m个单位,所得新抛物线与y轴交于点D,
8、过点D作DEx轴交新抛物线于点E,射线EO交新抛物线于点F,如果EO=2OF,求m的值.23(12分)先化简,再求值:,其中x=24(14分)如图,在RtABC中,C90,AC,tanB,半径为2的C分别交AC,BC于点D、E,得到DE弧求证:AB为C的切线求图中阴影部分的面积参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】解:作OCAB于C,连结OA,如图OCAB,AC=BC=AB=8=1在RtAOC中,OA=5,OC=,即圆心O到AB的距离为2故选A2、D【解析】根据反比例函数的性质,可得答案【详解】y=的k=-21,图象位于二四象限,a1,P(a,m)在
9、第二象限,m1;b1,Q(b,n)在第四象限,n1n1m,即mn,故D正确;故选D【点睛】本题考查了反比例函数的性质,利用反比例函数的性质:k1时,图象位于二四象限是解题关键3、B【解析】由弧长的计算公式可得答案.【详解】解:由圆弧长计算公式,将l=3代入,可得n =90,故选B.【点睛】本题主要考查圆弧长计算公式,牢记并运用公式是解题的关键.4、C【解析】甲的速度是:204=5km/h;乙的速度是:201=20km/h;由图象知,甲出发1小时后乙才出发,乙到2小时后甲才到,故选C5、C【解析】根据基本作图的方法即可得到结论【详解】解:(1)弧是以O为圆心,任意长为半径所画的弧,正确;(2)弧
10、是以P为圆心,大于点P到直线的距离为半径所画的弧,错误;(3)弧是以A为圆心,大于AB的长为半径所画的弧,错误;(4)弧是以P为圆心,任意长为半径所画的弧,正确故选C【点睛】此题主要考查了基本作图,解决问题的关键是掌握基本作图的方法6、C【解析】先将特殊角的三角函数值代入求解,再求出其相反数【详解】cos30=,cos30的相反数是,故选C【点睛】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值以及相反数的概念7、C【解析】试题解析:一元二次方程2x2+3x+m=0有两个相等的实数根,=32-42m=9-8m=0,解得:m=故选C8、C【解析】先解不等式得到x-1,根据
11、数轴表示数的方法得到解集在-1的左边【详解】5+1x1,移项得1x-4,系数化为1得x-1故选C【点睛】本题考查了在数轴上表示不等式的解集:先求出不等式组的解集,然后根据数轴表示数的方法把对应的未知数的取值范围通过画区间的方法表示出来,等号时用实心,不等时用空心9、C【解析】根据题意,结合图形,由平移的概念求解.【详解】由方格可知,在55方格纸中将图中的图形N平移后的位置如图所示,那么下面平移中正确的是:先向下移动2格,再向左移动1格,故选C【点睛】本题考查平移的基本概念及平移规律,是比较简单的几何图形变换.关键是要观察比较平移前后物体的位置.10、A【解析】先求出二次函数的对称轴,结合二次函
12、数的增减性即可判断【详解】解:二次函数的对称轴为直线,抛物线开口向下,当时,y随x增大而增大,故答案为:A【点睛】本题考查了根据自变量的大小,比较函数值的大小,解题的关键是熟悉二次函数的增减性二、填空题(共7小题,每小题3分,满分21分)11、四【解析】任何多边形的外角和是360度,因而这个多边形的内角和是360度n边形的内角和是(n-2)180,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数【详解】解:设边数为n,根据题意,得(n-2)180=360,解得n=4,则它是四边形故填:四.【点睛】此题主要考查已知多边形的内角和求边数,可以转化为方程的问题来解决
13、12、【解析】试题分析:解:在RtABC中,ACB=90,AC=4,BC=3,AB=5,点D为AB的中点,CD=AD=BD=AB=2.5,过D作DEBC,将ACD绕着点C逆时针旋转,使点A落在CB的延长线A处,点D落在点D处,CD=AD=AD,DE=1.5,AE=CE=2,BC=3,BE=1,BD=,故答案为考点:旋转的性质13、x1=1,x2=-.【解析】试题解析:3x(x-1)=2(x-1)3x(x-1)-2 (x-1) =0(3x-2)(x-1)=03x-2=0,x-1=0解得:x1=1,x2=-.考点:解一元二次方程-因式分解法.14、ab(3a+1)(3a-1)【解析】试题分析:原式
14、提取公因式后,利用平方差公式分解即可试题解析:原式=ab(9a2-1)=ab(3a+1)(3a-1)考点: 提公因式法与公式法的综合运用15、 【解析】先利用等腰直角三角形的性质求出BC=2,BF=AF=1,再利用勾股定理求出DF,即可得出结论【详解】如图,过点A作AFBC于F,在RtABC中,B=45,BC=AB=2,BF=AF=AB=1,两个同样大小的含45角的三角尺,AD=BC=2,在RtADF中,根据勾股定理得,DF=CD=BF+DF-BC=1+-2=-1,故答案为-1【点睛】此题主要考查了勾股定理,等腰直角三角形的性质,正确作出辅助线是解本题的关键16、2【解析】分析:首先求出方程的
15、根,再根据三角形三边关系定理,确定第三边的长,进而求其周长详解:解方程x2-10 x+21=0得x1=3、x2=1,3第三边的边长9,第三边的边长为1这个三角形的周长是3+6+1=2故答案为2点睛:本题考查了解一元二次方程和三角形的三边关系已知三角形的两边,则第三边的范围是:大于已知的两边的差,而小于两边的和17、12 连接DE与BC与交于点Q,连接DF与BC交于点M,连接GH与格线交于点N,连接MN与AB交于P 【解析】(1)利用勾股定理求出AB,从而得到ABC的周长;(2) 取格点D,E,F,G,H,连接DE与BC交于点Q;连接DF与BC交于点M;连接GH与格线交于点N;连接MN与AB交于
16、点P;连接AP,CQ即为所求.【详解】解:(1)AC=3,BC=4,C=90,根据勾股定理得AB=5,ABC的周长=5+4+3=12.(2)取格点D,E,F,G,H,连接DE与BC交于点Q;连接DF与BC交于点M;连接GH与格线交于点N;连接MN与AB交于点P;连接AQ,CP即为所求。故答案为:(1)12;(2)连接DE与BC与交于点Q,连接DF与BC交于点M,连接GH与格线交于点N,连接MN与AB交于P.【点睛】本题涉及的知识点有:勾股定理,三角形中位线定理,轴对称之线路最短问题.三、解答题(共7小题,满分69分)18、(1)直线l与O相切;(2)证明见解析;(3)214【解析】试题分析:(
17、1)连接OE、OB、OC由题意可证明BE=CE,于是得到BOE=COE,由等腰三角形三线合一的性质可证明OEBC,于是可证明OEl,故此可证明直线l与O相切;(2)先由角平分线的定义可知ABF=CBF,然后再证明CBE=BAF,于是可得到EBF=EFB,最后依据等角对等边证明BE=EF即可;(3)先求得BE的长,然后证明BEDAEB,由相似三角形的性质可求得AE的长,于是可得到AF的长试题解析:(1)直线l与O相切理由如下:如图1所示:连接OE、OB、OCAE平分BAC,BAE=CAEBE=CEBOE=COE又OB=OC,OEBClBC,OEl直线l与O相切(2)BF平分ABC,ABF=CBF
18、又CBE=CAE=BAE,CBE+CBF=BAE+ABF又EFB=BAE+ABF,EBF=EFBBE=EF(3)由(2)得BE=EF=DE+DF=1DBE=BAE,DEB=BEA,BEDAEBDEBE=BEAE,即47=7AE,解得;AE=494,AF=AEEF=4941=214考点:圆的综合题19、(1)(2)四边形是菱形.(3)【解析】(1)根据等边对等角及旋转的特征可得即可证得结论;(2)先根据两组对边分别平行的四边形是平行四边形,再得到邻边相等即可判断结论;(3)过点E作于点G,解可得AE的长,结合菱形的性质即可求得结果【详解】(1)证明:(证法一)由旋转可知,又即(证法二)由旋转可知
19、,而即(2)四边形是菱形.证明:同理四边形是平行四边形.又四边形是菱形(3)过点作于点,则在中,.由(2)知四边形是菱形,【点睛】解答本题的关键是掌握好旋转的性质,平行四边形判定与性质,的菱形的判定与性质,选择适当的条件解决问题.20、 (1);6;(2)有最小值;(3),.【解析】(1)先求出点B,C坐标,利用待定系数法求出抛物线解析式,进而求出点A坐标,即可求出半圆的直径,再构造直角三角形求出点D的坐标即可求出BD;(2)先判断出要求的最小值,只要CG最大即可,再求出直线EG解析式和抛物线解析式联立成的方程只有一个交点,求出直线EG解析式,即可求出CG,结论得证(3)求出线段AC,BC进而
20、判断出满足条件的一个点P和点B重合,再利用抛物线的对称性求出另一个点P【详解】解:(1) 对于直线y=x-3,令x=0,y=-3,B(0,-3),令y=0,x-3=0,x=4,C(4,0),抛物线y=x2+bx+c过B,C两点, 抛物线的解析式为y=;令y=0,=0,x=4或x=-1,A(-1,0),AC=5,如图2,记半圆的圆心为O,连接OD,OA=OD=OC=AC=,OO=OC-OC=4-=,在RtOOD中,OD=2, D(0,2),BD=2-(-3)=5; (2) 如图3,A(-1,0),C(4,0),AC=5,过点E作EGBC交x轴于G,ABF的AF边上的高和BEF的EF边的高相等,设
21、高为h,SABF=AFh,SBEF=EFh,= 的最小值,最小,CFGE, 最小,即:CG最大,EG和果圆的抛物线部分只有一个交点时,CG最大,直线BC的解析式为y=x-3,设直线EG的解析式为y=x+m,抛物线的解析式为y=x2-x-3,联立化简得,3x2-12x-12-4m=0,=144+43(12+4m)=0,m=-6,直线EG的解析式为y=x-6,令y=0,x-6=0,x=8,CG=4, =;(3),.理由:如图1,AC是半圆的直径,半圆上除点A,C外任意一点Q,都有AQC=90,点P只能在抛物线部分上,B(0,-3),C(4,0),BC=5,AC=5,AC=BC,BAC=ABC,当A
22、PC=CAB时,点P和点B重合,即:P(0,-3),由抛物线的对称性知,另一个点P的坐标为(3,-3),即:使APC=CAB,点P坐标为(0,-3)或(3,-3)【点睛】本题是二次函数综合题,考查待定系数法,圆的性质,勾股定理,相似三角形的判定和性质,抛物线的对称性,等腰三角形的判定和性质,判断出CG最大时,两三角形面积之比最小是解本题的关键21、()68()56【解析】(1)圆内接四边形的一个外角等于它的内对角,利用圆内接四边形的性质证明CED=A即可,(2)连接AE,在RtAEC中,先根据同圆中,相等的弦所对弧相等,再根据同圆中,相等的弧所对圆周角相等, 求出EAC,最后根据直径所对圆周是直角,利用直角三角形两锐角互余即可解决问题.【详解】()四边形ABED 圆内接四边形,A+DEB=180,CED+DEB=180,CED=A,A=68,CED=68()连接AEDE=BD,,DAE=EAB=CAB=34,AB是直径,AEB=90,AEC=90,C=90DAE=9034=56【点睛】本题主要考查圆周角定理、直径的性质、圆内接四边形的性质等知识,解决本题的关键是灵活运用所学知识解决问题22、(1);(2)P(1,); (3)3或5.【解析】(1)将点A、B代入抛物线,用待定系数法求出解析式
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年中职大气污染化学和物理(污染治理技术)试题及答案
- 2025年大学大一(经济学基础)经济学综合测试试题及答案
- 2025年注册会计师(CPA)考试 会计科目押题试卷:历2025年真题深度解析及答案
- 2025 小学二年级科学下册了解植物根的生长实验报告课件
- 社群营销培训
- 夏津第一中学2025~2026学年高一上学期1月份月考政治试题
- 湖南省株洲市2025-2026学年高三教学质量统一检测(一模)化学试题(含答案)
- 2025广东佛山市高明建设投资集团有限公司(第十五期)招聘2人备考题库含答案详解
- 2025广东佛山禅城区南庄镇吉利中学招聘数学地理临聘教师备考题库及答案详解(新)
- 2026年陕西师范大学少数民族学生专职辅导员招聘备考题库及答案详解(考点梳理)
- 深度解析(2026)《MZT 238-2025 监测和定位辅助器具 毫米波雷达监测报警器》
- 2025-2026学年小学美术湘美版(2024)四年级上册期末练习卷及答案
- 办公用品、耗材采购服务投标方案
- 辽宁省大连市2026届高三上学期1月双基模拟考试语文试题(含答案)
- 2025年肿瘤科年度工作总结汇报
- 浙江省宁波市2025-2026学年八年级上数学期末自编模拟卷
- (正式版)DB51∕T 3336-2025 《零散天然气橇装回收安全规范》
- 初三数学备课组年终工作总结
- 2025年高职工业机器人(机器人编程调试)试题及答案
- 湖南名校联考联合体2026届高三年级1月联考物理试卷+答案
- GB/T 19466.3-2025塑料差示扫描量热(DSC)法第3部分:熔融和结晶温度及热焓的测定
评论
0/150
提交评论