教程40.流体力学numerical methods for heat,年-peakchina l_第1页
教程40.流体力学numerical methods for heat,年-peakchina l_第2页
教程40.流体力学numerical methods for heat,年-peakchina l_第3页
教程40.流体力学numerical methods for heat,年-peakchina l_第4页
教程40.流体力学numerical methods for heat,年-peakchina l_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、Lecture 43: Algebraic Multigrid MethodCycling StrategiesLast TimeWeConsidered the algebraic multigrid method Developed coarse-level discrete equations by addion of fine-level equations togetherConsidered an agglomeration strategy based on coefficient sizeThis Time Complete the discussion of coeffici

2、ent-based agglomeration strategyDiscuss cycling strategies for switching between coarse and fine levelsRecall Coefficient-Based Agglomeration At fine level (l) assign each fine-level cell i a coarse-level cell index I. Initialize I=0 for all fine level cellsSet coarse level counter C=1Visit fine-lev

3、el cells one by one Check if already in coarse-level groupIf not, group together the cell and n of its neighbors with the largest coefficients A(l)ijAssign the coarse index C to the group, i.e., set I=CIncrement C=C+1Go to next fine level cellGroup size n=2 can be shown to yield best performanceDoub

4、les necessary coefficient storageUnstructured Mesh Coefficients For unstructured meshes, coefficient agglomeration leads toHere, GI is the set of fine-level cellsbelonging to coarse-level cell IGIGJWhy Does Coefficient-Based Agglomeration Work?Consider conjugate heat transfer in a square domain Air,

5、 k =0.02 W/mkCopper, k =400 W/mkT1T2T3T4Coefficients on Fine-Level MeshUsing harmonic mean interpolationInterior coefficient for near-interface cell:nPNAir/Cu interfaceCoefficients (contd)For cell in copper region at interface, coefficients to air side are very small compared to coefficients to othe

6、r cells in the copper regionHowever, Dirichlet boundary conditions are only available on the air sideCoefficient anisotropy makes it very difficult for information to travel into the copper during normal Gauss-Seidel iterationMulti-grid agglomeration cures this problemCoefficient-Based Agglomeration

7、At coarsest level, only 2 cellsOnly one “neighbor” coeffcient for copper-airNo coefficient anisotropy problemAnisotropic Conductionk 0, k =0Equations in direction agglomeratedThis makes sense because high k in that direction makes cells have similar temperaturebgExampleSet boundary temperatures = 30

8、0KGuess T=500K in the interiorMesh size: 20 x20K ratio =1000T1T2T3T4Residual using Gauss-Seidel IterationTemperature Profiles with Gauss-Seidel Iteration Residual using Multi-Grid SchemeTemperature Profiles Using Multi-GridIter=1Iter=3Multigrid CyclesVarious cycling strategies exist for visiting coa

9、rse levelsThese cycles are most easily written in a language that allows recursionC allows a function to call itself, FORTRAN does notTwo types of cycles Fixed coarse levels visited in a predetermined sequenceFlexible cycle between levels depending on residual reduction ratesFixed Cycles: V CycleTwo

10、 legs a “down leg” and an “up leg”In the down legStart with finest level. Do 1 G-S iterations (sweeps)Restrict residuals to next coarse level. Do 1 G-S sweepsContinue till coarsest level is reachedNow start up legProlongate corrections from coarsest level to next fine level. Do 2 G-S sweepsContinue

11、in this way to finest levelThis completes one MG V-cycle iterationV Cycle (Contd)Value of 1 and 2 do not have to be the sameIn many implementations, 1 =0 but 2 is non-zero Gauss-Seidel SweepsRestriction orProlongationFixed Cycles: CyclesV cycle sometimes not sufficient for very stiff problems such a

12、s the Cu/air example we have just seenCan think of V cycle as consisting of Applying a “down-leg” operation recursively until coarsest level is reachedApplying an “up-leg” operation recursively until finest level is reached cycle Apply V-cycle recursively times at each levelFixed Cycles: W Cycle Can

13、 be thought of as a cycle with =2Spends a lot of effort at coarse levelsGood for very stiff problemsFixed Cycles: F CycleDo the down leg and then apply V cycle once at each successive levelFlexible Cycle: Brandt or Flex CycleTypically used if we do not need as much heft in our multigrid cycleResidua

14、l reduction parameter . At any multigrid level (l)Rk is the residual at iteration k at level (l). R0 is the residual upon entering the levelTermination criterion : if , stop sweeping at current level Flex Cycle (Contd) At finest level, find residual R0Do k iterations. Find residual Rk and therefore If is larger than prescribed value, convergence is not fast enoughHence drop to next coarse level and repeat recursivelyIf is smaller than prescribed, iterations are going well, so continueCheck if R . If finest level, solution is

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论