2022年辽宁省盘锦市双台子区第一中学数学九年级第一学期期末质量跟踪监视试题含解析_第1页
2022年辽宁省盘锦市双台子区第一中学数学九年级第一学期期末质量跟踪监视试题含解析_第2页
2022年辽宁省盘锦市双台子区第一中学数学九年级第一学期期末质量跟踪监视试题含解析_第3页
2022年辽宁省盘锦市双台子区第一中学数学九年级第一学期期末质量跟踪监视试题含解析_第4页
2022年辽宁省盘锦市双台子区第一中学数学九年级第一学期期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2022-2023学年九上数学期末模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1如图,将命题“在同圆中,相等的圆心角所对的弧相等,所对的弦也相等”改写成“已知求证”的形式,下列正确的是( )A已知:在O中,AOB=COD,弧AB=弧C

2、D求证:AB=CDB已知:在O中,AOB=COD,弧AB=弧BC求证:AD=BCC已知:在O中,AOB=COD求证:弧AD=弧BC,AD=BCD已知:在O中,AOB=COD求证:弧AB=弧CD,AB=CD2在平面直角坐标系中,点A(0,2)、B(a,a+2)、C(b,0)(a0,b0),若AB=且ACB最大时,b的值为()ABCD3用公式法解一元二次方程时,化方程为一般式当中的依次为()ABCD4在平面直角坐标系中,点P(1,2)关于原点的对称点的坐标为()A(1,2) B(1,2) C(2,1) D(2,1)5若一个圆锥的主视图是腰长为5,底边长为6的等腰三角形,则该圆锥的侧面积是( )A1

3、5B20C24D3062018年,临江市生产总值为1587.33亿元,请用科学记数法将1587.33亿表示为()A1587.33108B1.587331013C1.587331011D1.5873310127如图,AD是半圆O的直径,AD12,B,C是半圆O上两点若,则图中阴影部分的面积是( )A6B12C18D248下列事件中是必然发生的事件是( )A抛两枚均匀的硬币,硬币落地后,都是正面朝上B射击运动员射击一次,命中十环C在地球上,抛出的篮球会下落D明天会下雨9已知圆锥的底面半径为2cm,母线长为5cm,则圆锥的侧面积是( )A20cm2B20cm2C10cm2D5cm210己知点都在反比

4、例函数的图象上,则( )ABCD二、填空题(每小题3分,共24分)11如图,中,则 _12已知圆锥的侧面积为16cm2,圆锥的母线长8cm,则其底面半径为_cm13如图,四边形ABCD、AEFG都是正方形,且BAE45,连接BE并延长交DG于点H,若AB4,AE,则线段BH的长是_14如图,正六边形ABCDEF内接于O,点M是边CD的中点,连结AM,若圆O的半径为2,则AM=_.15如图,从一块直径是的圆形铁皮上剪出一个圆心角是的扇形,如果将剪下来的扇形围成一个圆锥,那么圆锥的底面圆的半径为_16如图,在中,分别是,上的点,平分,交于点,交于点,若,且,则_17一元二次方程的一个根为,另一个根

5、为_.18用配方法解一元二次方程,配方后的方程为,则n的值为_.三、解答题(共66分)19(10分)已知二次函数y=a4x+c的图象过点(1,0)和点(2,9),(1)求该二次函数的解析式并写出其对称轴;(2)当x满足什么条件时,函数值大于0?(不写求解过程),20(6分)如图,在平行四边形中,(1)求与的周长之比;(2)若求21(6分)已知关于x的方程x2(2k1)xk22k30有两个不相等的实数根(1)求实数k的取值范围(2)设方程的两个实数根分别为x1,x2,是否存在这样的实数k,使得|x1|x2|成立?若存在,求出这样的k值;若不存在,请说明理由22(8分)如图,正方形ABCD的边长为

6、2,点E是AD边上的动点,从点A开始沿AD向D运动以BE为边,在BE的上方作正方形BEFG,EF交DC于点H,连接CG、BH请探究:(1)线段AE与CG是否相等?请说明理由(2)若设AE=x,DH=y,当x取何值时,y最大?最大值是多少?(3)当点E运动到AD的何位置时,BEHBAE?23(8分)已知关于的一元二次方程的一个根是1,求它的另一个根及m的值24(8分)如图,同学们利用所学知识去测量海平面上一个浮标到海岸线的距离. 在一笔直的海岸线l上有A、B两个观测站,A在B的正东方向,小宇同学在A处观测得浮标在北偏西60的方向,小英同学在距点A处60米远的B点测得浮标在北偏西45的方向,求浮标

7、C到海岸线l的距离(结果精确到0.01 m).25(10分)如图,在矩形的边上取一点,连接并延长和的延长线交于点,过点作的垂线与的延长线交于点,与交于点,连接(1)当且时,求的长;(2)求证:;(3)连接,求证:26(10分)永农化工厂以每吨800元的价格购进一批化工原料,加工成化工产品进行销售,已知每1吨化工原料可以加工成化工产品0.8吨,该厂预计销售化工产品不超过50吨时每吨售价为1600元,超过50吨时,每超过1吨产品,销售所有的化工产品每吨价格均会降低4元,设该化工厂生产并销售了x吨化工产品(1)用x的代数式表示该厂购进化工原料 吨;(2)当x50时,设该厂销售完化工产品的总利润为y,

8、求y关于x的函数关系式;(3)如果要求总利润不低于38400元,那么该厂购进化工原料的吨数应该控制在什么范围?参考答案一、选择题(每小题3分,共30分)1、D【分析】根据命题的概念把原命题写成:“如果.求证.”的形式.【详解】解:“在同圆中,相等的圆心角所对的弧相等,所对的弦也相等”,改写成:已知:在O中,AOB=COD.求证:弧AB=弧CD,AB=CD故选:D【点睛】本题考查命题,掌握将命题改写为“如果.求证.”的形式,是解题的关键.2、B【分析】根据圆周角大于对应的圆外角可得当的外接圆与轴相切时,有最大值,此时圆心F的横坐标与C点的横坐标相同,并且在经过AB中点且与直线AB垂直的直线上,根

9、据FB=FC列出关于b的方程求解即可.【详解】解:AB=,A(0,2)、B(a,a+2),解得a=4或a=-4(因为a0,舍去)B(4,6),设直线AB的解析式为y=kx+2,将B(4,6)代入可得k=1,所以y=x+2,利用圆周角大于对应的圆外角得当的外接圆与轴相切时,有最大值.如下图,G为AB中点,设过点G且垂直于AB的直线,将代入可得,所以.设圆心,由,可知,解得(已舍去负值).故选:B.【点睛】本题考查圆的综合题,一次函数的应用和已知两点坐标,用勾股定理求两点距离.能结合圆的切线和圆周角定理构建图形找到C点的位置是解决此题的关键.3、B【分析】先整理成一般式,然后根据定义找出即可.【详

10、解】方程化为一般形式为:,故选:【点睛】题考查了一元二次方程的一般形式,一元二次方程的一般形式为ax2+bx+c=0(a0)其中a是二次项系数,b是一次项系数,c是常数项.4、B【解析】用关于原点的对称点的坐标特征进行判断即可.【详解】点P(-1,2)关于原点的对称点的坐标为(1,-2),故选: B.【点睛】根据两个点关于原点对称时, 它们的坐标符号相反.5、A【解析】试题分析:圆锥的主视图是腰长为5,底边长为6的等腰三角形,这个圆锥的底面圆的半径为3,母线长为5.这个圆锥的侧面积=故选A考点:1.简单几何体的三视图;2.圆锥的计算6、C【分析】科学记数法的表示形式为a10n的形式,其中1|a

11、|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数【详解】解:用科学记数法将1587.33亿表示为1587.331081.587331故选:C【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为的形式,其中1|a|10,为整数,表示时关键要正确确定的值以及的值7、A【分析】根据圆心角与弧的关系得到AOB=BOC=COD=60,根据扇形面积公式计算即可【详解】,AOB=BOC=COD=60.阴影部分面积=.故答案为A.【点睛】本题考查的知识点是扇形面积的计算,解题关键是利用圆心角与弧

12、的关系得到AOB=BOC=COD=60.8、C【解析】试题分析:A抛两枚均匀的硬币,硬币落地后,都是正面朝上是随机事件,故A错误;B射击运动员射击一次,命中十环是随机事件,故B错误;C在地球上,抛出的篮球会下落是必然事件,故C正确;D明天会下雨是随机事件,故D错误;故选C考点:随机事件9、C【解析】圆锥的侧面积=底面周长母线长2,把相应数值代入,圆锥的侧面积=2252=10故答案为C10、D【解析】试题解析:点A(1,y1)、B(1,y1)、C(-3,y3)都在反比例函数y=的图象上,y1=-;y1=-1;y3=,-1,y3y1y1故选D二、填空题(每小题3分,共24分)11、17【解析】Rt

13、ABC中,C=90,tanA= ,AC8,AB= =17,故答案为17.12、1【解析】圆锥的底面圆的半径为r,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形面积公式得到1r816,解得r1,然后解关于r的方程即可【详解】解:设圆锥的底面圆的半径为r,根据题意得1r816,解得r1,所以圆锥的底面圆的半径为1cm故答案为1【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长13、【分析】连结GE交AD于点N,连结DE,由于BAE45,AF与EG互相垂直平分,且AF在AD上,由可得到

14、ANGN1,所以DN413,然后根据勾股定理可计算出,则,解着利用计算出HE,所以BHBE+HE【详解】解:连结GE交AD于点N,连结DE,如图,BAE45,AF与EG互相垂直平分,且AF在AD上,ANGN1,DN413,在RtDNG中,;由题意可得:ABE相当于逆时针旋转90得到AGD,故答案是:【点睛】本题考查了正方形的性质,解题的关键是会运用勾股定理和等腰直角三角形的性质进行几何计算14、【分析】连接AD,过M作MGAD于G,根据正六边形的相关性质,求得AD,MD的值,再根据CDG=60,求出DG,MG的值,最后利用勾股定理求出AM的值.【详解】解:连接AD,过M作MGAD于G,则由正六

15、边形可得,AD=2AB=4,CDA=60,又MD=CD=1,DG=,MG=,AG=AD-DG=,AM=故答案为【点睛】本题考查了正多边形和圆、正六边形的性质、三角函数、勾股定理;熟练掌握正六边形的性质,作出辅助线构造直角三角形是解题的关键.15、【分析】根据题意可知扇形ABC围成圆锥后的底面周长就是弧BC的弧长,再根据弧长公式和圆周长公式来求解.【详解】解:作于点,连结OA、BC, BAC=90BC是直径,OB=OC, 圆锥的底面圆的半径故答案为:【点睛】本题考查了扇形围成圆锥形,圆锥的底面圆的周长就是原来扇形的弧长,找到它们的关系是解题的关键.16、3:1【分析】根据题意利用相似三角形的性质

16、即相似三角形的对应角平分线的比等于相似比即可解决问题.【详解】解:DAE=CAB,AED=B,ADEACB,GA,FA分别是ADE,ABC的角平分线,(相似三角形的对应角平分线的比等于相似比),AG:FG=3:2,AG:AF=3:1,DE:BC=3:1,故答为3:1【点睛】本题考查相似三角形的判定和性质、解题的关键是灵活运用所学知识解决问题,属于中考常考题型,难度一般17、【分析】利用因式分解法解得方程的两个根,即可得出另一个根的值.【详解】,变形为:,或,解得:;,一元二次方程的另一个根为:.故答案为:.【点睛】本题考查了解一元二次方程-因式分解法.18、7【分析】根据配方法,先移项,然后两

17、边同时加上4,即可求出n的值.【详解】解:,;故答案为:7.【点睛】本题考查了配方法解一元二次方程,解题的关键是熟练掌握配方法的步骤.三、解答题(共66分)19、(1),;(2)当x或x5时,函数值大于1【分析】(1)把(-1,1)和点(2,-9)代入y=ax2-4x+c,得到一个二元一次方程组,求出方程组的解,即可得到该二次函数的解析式,然后求出对称轴;(2)求得抛物线与x轴的交点坐标后即可确定正确的答案【详解】解:(1)二次函数的图象过点(1,1)和点(2,9),解得:,;对称轴为:;(2)令,解得:,如图:点A的坐标为(,1),点B的坐标为(5,1);结合图象得到,当x或x5时,函数值大

18、于1【点睛】本题主要考查对用待定系数法求二次函数的解析式及抛物线与x轴的交点坐标的知识,解题的关键是正确的求得抛物线的解析式20、 (1)与周长的比等于相似比等于;(2)【分析】(1)根据平行四边形对边平行,得到两个三角形相似,根据两个三角形相似,得到AEF与CDF的周长比等于对应边长之比,做出两个三角形的边长之比,可得AEF与CDF的周长比;(2)利用两个三角形的面积之比等于边长之比的平方,利用两个三角形的边长之比,根据AEF的面积等于6cm2,得到要求的三角形的面积【详解】解:由得,又是平行四边形,由得所以与周长的比等于相似比等于.由由解得.【点睛】本题考查三角形相似的性质,两个三角形相似

19、,对应的高线,中线和角平分线之比等于边长之比,两个三角形的面积之比等于边长比的平方,这种性质用的比较多21、(1) k;(2)1【分析】(1)由方程有两个不相等的实数根知2,列出关于k的不等式求解可得;(2)由韦达定理知x1+x2=2k1,x1x2=k22k+2=(k1)2+12,可以判断出x12,x22将原式两边平方后把x1+x2、x1x2代入得到关于k的方程,求解可得【详解】解:(1)由题意知2,(2k1)211(k22k+2)2,整理得:1k72,解得:k;(2)由题意知x1+x2=2k1,x1x2=k22k+2=(k+1)2+12,x1,x2同号x1+x2=2k1=,x12,x22|x

20、1|x2|,x1x2,x122x1x2+x22=5,即(x1+x2)21x1x2=5,代入得:(2k1)21(k22k+2)=5,整理,得:1k12=2,解得:k=3【点睛】本题考查了根与系数的关系及根的判别式,熟练掌握判别式的值与方程的根之间的关系及韦达定理是解题的关键22、(1)AE=CG,见解析;(2)当x=1时,y有最大值,为;(3)当E点是AD的中点时,BEHBAE,见解析.【解析】(1)由正方形的性质可得AB=BC,BE=BG,ABC=EBG=90,由“SAS”可证ABECBG,可得AE=CG;(2)由正方形的性质可得A=D=FEB=90,由余角的性质可得ABE=DEH,可得ABE

21、DEH,可得,由二次函数的性质可求最大值;(3)当E点是AD的中点时,可得AE=1,DH=,可得,且A=FEB=90,即可证BEHBAE【详解】(1)AE=CG,理由如下:四边形ABCD,四边形BEFG是正方形,AB=BC,BE=BG,ABC=EBG=90,ABE=CBG,且AB=BC,BE=BG,ABECBG(SAS),AE=CG;(2)四边形ABCD,四边形BEFG是正方形,A=D=FEB=90,AEB+ABE=90,AEB+DEH=90,ABE=DEH,又A=D,ABEDEH,=,当x=1时,y有最大值为;(3)当E点是AD的中点时,BEHBAE,理由如下:E是AD中点,AE=1,又AB

22、EDEH,又,且DAB=FEB=90,BEHBAE.【点睛】本题是相似形综合题,考查了相似三角形的判定和性质,正方形的性质,二次函数的性质,灵活运用这些性质进行推理是本题的关键23、另一根为-3,m=1【分析】设方程的另一个根为a,由根与系数的关系得出a+1=m,a1=3,解方程组即可【详解】设方程的另一个根为a,则由根与系数的关系得:a+1=m,a1=3,解得:a=3,m=1,答:方程的另一根为3,m=1【点睛】本题考查了根与系数的关系和一元二次方程的解,能熟记根与系数的关系的内容是解答本题的关键24、点C到海岸线l的距离约为81.96km.【分析】过点C作CDAB于D,设CD=x米,分别利用在RtBCD与RtACD表示出CD,AD,再利用tanCAD=tan 30即可求出x,故可求解.【详解】解:如图,过点C作CDAB于D,设CD=x米, 由题意得CBD=45, CAD=30, AB=45米在RtBCD中,CBD=45, BD=CD=x米. 在RtACD中,CAD=30, AD=60+x, =tanCAD=ta

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论