版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2022-2023学年九上数学期末模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(每小题3分,共30分)1如图,AD是O的直径,以A为圆心,弦AB为半径画弧
2、交O于点C,连结BC交AD于点E,若DE3,BC8,则O的半径长为( )AB5CD2在反比例函数的图象中,阴影部分的面积不等于4的是( )ABCD3如图,正方形ABCD的对角线AC与BD相交于点O,ACB的角平分线分别交AB,BD于M,N两点若AM2,则线段ON的长为( )ABC1D4如图,O是ABC的外接圆,C60,则AOB的度数是( )A30B60C120D1505已知某二次函数的图象如图所示,则这个二次函数的解析式为()Ay3(x1)2+3By3(x1)2+3Cy3(x+1)2+3Dy3(x+1)2+36下列图形中,既是中心对称图形,又是轴对称图形的是( )A等边三角形B平行四边形C等腰
3、三角形D菱形7如图,已知点A,B,C,D,E,F是边长为1的正六边形的顶点,连接任意两点均可得到一条线段,在连接两点所得的所有线段中任取一条线段,取到长度为2的线段的概率为( )ABCD8下列图形中,是中心对称图形但不是轴对称图形的是 ( )ABCD9二次函数y=ax2+bx+c(a0)的图象如图,给出下列四个结论:4acb20;4a+c2b;3b+2c0;m(am+b)+ba(m1),其中正确结论的个数是( )A4个B3个C2个D1个10下列图形中既是轴对称图形又是中心对称图形的是()ABCD二、填空题(每小题3分,共24分)11路灯(P点)距地面高9米,身高15的小艺站在距路灯的底部(O点
4、)20米的A点,则此时小艺在路灯下的影子长是_米12若关于x的一元二次方程(k1)x2+4x+1=0有实数根,则k的取值范围是_13定义为函数的“特征数”如:函数的“特征数”是,函数的“特征数”是,在平面直角坐标系中,将“特征数”是的函数的图象向下平移3个单位,再向右平移1个单位,得到一个新函数,这个新函数的“特征数”是_.14若点A(4,y1)、B(2,y2)、C(2,y3)都在反比例函数的图象上,则y1、y2、y3的大小关系是_15抛物线y=x2+bx+c的部分图象如图所示,若y0,则x的取值范围是_16已知点B位于点A北偏东30方向,点C位于点A北偏西30方向,且AB=AC=8千米,那么
5、 BC=_千米17一个口袋中放有除颜色外,形状大小都相同的黑白两种球,黑球6个,白球10个现在往袋中放入m个白球和4个黑球,使得摸到白球的概率为,则m_18二次函数yax2+bx+c(a0)的图象如图所示,根据函数图象,可以写出一系列的正确结论,如:a0;b0;c0;对称轴为直线x1;请你再写出该函数图象的一个正确结论:_三、解答题(共66分)19(10分)已知在以点O为圆心的两个同心圆中,大圆的弦AB交小圆于点C,D(如图)(1)求证:AC=BD;(2)若大圆的半径R=10,小圆的半径r=8,且圆O到直线AB的距离为6,求AC的长20(6分)如图,一次函数ykx+b的图象与反比例函数y的图象
6、交于A、B两点(1)利用图中的条件,求反比例函数和一次函数的解析式(2)求AOB的面积(3)根据图象直接写出使一次函数的值大于反比例函数的值的x的取值范围21(6分)某乡镇实施产业扶贫,帮助贫困户承包了荒山种植某品种蜜柚.到了收获季节,已知该蜜柚的成本价为8元/千克,投入市场销售时,调查市场行情,发现该蜜柚销售不会亏本,且每天销售量(千克)与销售单价(元/千克)之间的函数关系如图所示. (1)求与的函数关系式,并写出的取值范围; (2)当该品种蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少? (3)某农户今年共采摘蜜柚4800千克,该品种蜜柚的保质期为40天,根据(2)中获得最大利润
7、的方式进行销售,能否销售完这批蜜柚?请说明理由.22(8分)如图,在ABC中,AD是BC边上的高,tanBcosDAC(1)求证:ACBD;(2)若sin C,BC12,求ABC的面积23(8分)在中,以点为圆心、为半径作圆,设点为上一点,线段绕着点顺时针旋转,得到线段,连接、(1)在图中,补全图形,并证明 .(2)连接,若与相切,则的度数为 .(3)连接,则的最小值为 ;的最大值为 .24(8分)墙壁及淋浴花洒截面如图所示,已知花洒底座与地面的距离为,花洒的长为,与墙壁的夹角为43求花洒顶端到地面的距离(结果精确到)(参考数据:,)25(10分)如图,在平面直角坐标系中,已知AOB是等边三角
8、形,点A的坐标是(0,3),点B在第一象限,OAB的平分线交x轴于点P,把AOP绕着点A按逆时针方向旋转,使边AO与AB重合,得到ABD,连接DP求:DP的长及点D的坐标26(10分)如图,四边形ABCD的四个顶点分别在反比例函数与(x0,0mn)的图象上,对角线BD/y轴,且BDAC于点P已知点B的横坐标为1(1)当m=1,n=20时若点P的纵坐标为2,求直线AB的函数表达式若点P是BD的中点,试判断四边形ABCD的形状,并说明理由(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由参考答案一、选择题(每小题3分,共30分)1、A【分析】由作法得,根据圆周
9、角定理得到ADBABE,再根据垂径定理的推论得到ADBC,BECEBC4,于是可判断RtABERtBDE,然后利用相似比求出AE,从而得到圆的直径和半径【详解】解:由作法得ACAB,ADBABE,AB为直径,ADBC,BECEBC4,BEABED90,而BDEABE,RtABERtBDE,BE:DEAE:BE,即4:3AE:4,AE,ADAE+DE+3,O的半径长为故选:A【点睛】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形,灵活运用相似三角形的性质表示线
10、段之间的关系也考查了圆周角定理2、B【分析】根据反比例函数中k的几何意义,过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|解答即可【详解】解:A、图形面积为|k|=1;B、阴影是梯形,面积为6;C、D面积均为两个三角形面积之和,为2(|k|)=1故选B【点睛】主要考查了反比例函数中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=|k|3、C【分析】作MHAC于H,如图,根据正方形的性质得MAH
11、=45,则AMH为等腰直角三角形,所以AH=MH=AM=,再根据角平分线性质得BM=MH=,则AB=2+,于是利用正方形的性质得到AC=AB=2+2,OC=AC=+1,所以CH=AC-AH=2+,然后证明CONCHM,再利用相似比可计算出ON的长【详解】试题分析:作MHAC于H,如图,四边形ABCD为正方形,MAH=45,AMH为等腰直角三角形,AH=MH=AM=2=,CM平分ACB,BM=MH=,AB=2+,AC=AB=(2+)=2+2,OC=AC=+1,CH=ACAH=2+2=2+,BDAC,ONMH,CONCHM,即,ON=1故选C【点睛】本题考查了相似三角形的判定与性质:在判定两个三角
12、形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形也考查了角平分线的性质和正方形的性质4、C【分析】根据圆周角定理即可得到结论【详解】C60,AOB2C120,故选:C【点睛】本题考查了三角形的外接圆与外心,圆周角定理,熟练掌握圆周角定理是解题的关键5、A【分析】利用顶点式求二次函数的解析式.【详解】设二次函数y=a(x1)1+2,把(0,11)代入可求出a=-1故二次函数的解析式为y=1(x1)1+2故选A考点:待定系数法求二次函数解析式6、D【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两
13、旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴;中心对称图形的定义:把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,针对每一个选项进行分析【详解】解:A、是轴对称图形,不是中心对称图形故此选项错误;B、不是轴对称图形,是中心对称图形故此选项错误;C、是轴对称图形,不是中心对称图形故此选项错误;D、是轴对称图形,也是中心对称图形故此选项正确;故选D7、D【分析】先求出连接两点所得的所有线段总数,再用列举法求出取到长度为2的线段条数,由此能求出在连接两点所得的所有线段中任取一条线段,取到长度为2的线段的概率【详解】点A,B,C,
14、D,E,F是边长为1的正六边形的顶点,连接任意两点均可得到一条线段,连接两点所得的所有线段总数n=15条,取到长度为2的线段有:FC、AD、EB共3条在连接两点所得的所有线段中任取一条线段,取到长度为2的线段的概率为:p故选:D【点睛】此题主要考查了正多边形和圆以及几何概率,正确利用正六边形的性质得出AD的长是解题关键8、D【分析】根据中心对称图形和轴对称图形的定义即可得解【详解】A、不是中心对称图形,也不是轴对称图形,此项错误B、是中心对称图形,也是轴对称图形,此项错误C、不是中心对称图形,是轴对称图形,此项错误D、是中心对称图形,但不是轴对称图形,此项正确故选:D【点睛】本题考查的是中心对
15、称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合9、B【详解】解:抛物线和x轴有两个交点,b24ac0,4acb20,正确;对称轴是直线x1,和x轴的一个交点在点(0,0)和点(1,0)之间,抛物线和x轴的另一个交点在(3,0)和(2,0)之间,把(2,0)代入抛物线得:y=4a2b+c0,4a+c2b,错误;把(1,0)代入抛物线得:y=a+b+c0,2a+2b+2c0,b=2a,3b,2c0,正确;抛物线的对称轴是直线x=1,y=ab+c的值最大,即把(m,0)(m0)代入得:y=am2+bm+cab+c,
16、am2+bm+ba,即m(am+b)+ba,正确;即正确的有3个,故选B考点:二次函数图象与系数的关系10、B【分析】根据中心对称图形和轴对称图形的概念对各选项分析判断即可得解【详解】解:A、是轴对称图形,不是中心对称图形,故本选项不合题意;B、既是轴对称图形又是中心对称图形,故本选项符合题意;C、是轴对称图形,不是中心对称图形,故本选项不合题意;D、不是轴对称图形,是中心对称图形,故本选项不合题意故选:B【点睛】此题考查的是中心对称图形和轴对称图形的识别,掌握中心对称图形和轴对称图形的概念是解决此题的关键二、填空题(每小题3分,共24分)11、2【分析】此题利用三角形相似证明即可,即图中路灯
17、与影长组成的三角形和小艺与自身影长组成的三角形相似,再根据对应边成比计算即可【详解】如图:POOB,ACAB,O=CAB,POBCAB, ,由题意知:PO=9,CA=1.5,OA=20,解得:AB=2,即小艺在路灯下的影子长是2米,故答案为:2【点睛】此题考查根据相似三角形测影长的相关知识,利用相似三角形的相关性质即可12、k5且k1【解析】试题解析:一元二次方程(k1)x2+4x+1=0有实数根,k10,且b24ac=164(k1)0,解得:k5且k1.考点:根的判别式13、【分析】首先根据“特征数”得出函数解析式,然后利用平移规律得出新函数解析式,化为一般式即可判定其“特征数”.【详解】由
18、题意,得“特征数”是的函数的解析式为,平移后的新函数解析式为这个新函数的“特征数”是故答案为:【点睛】此题主要考查新定义下的二次函数的平移,解题关键是理解题意.14、y2y1y1【分析】根据反比例函数的图象和性质,即可得到答案【详解】反比例函数的比例系数k0,y10,y2y1y1故答案是:y2y1y1【点睛】本题主要考查反比例函数的图象和性质,掌握反比例函数的增减性,是解题的关键15、3x1【解析】试题分析:根据抛物线的对称轴为x=1,一个交点为(1,0),可推出另一交点为(3,0),结合图象求出y0时,x的范围解:根据抛物线的图象可知:抛物线的对称轴为x=1,已知一个交点为(1,0),根据对
19、称性,则另一交点为(3,0),所以y0时,x的取值范围是3x1故答案为3x1考点:二次函数的图象16、8【解析】因为点B位于点A北偏东30方向,点C位于点A北偏西30方向,所以BAC=60,因为AB=AC,所以ABC是等边三角形,所以BC=AB=AC=8千米,故答案为:8.17、1【分析】根据概率公式列出方程,即可求出答案【详解】解:由题意得, 解得m1,经检验m1是原分式方程的根,故答案为1【点睛】本题主要考查了概率公式,根据概率公式列出方程是解题的关键18、4a+2b+c1【分析】由函数的图象当x=2时,对应的函数值小于1,把x=2代入函数的关系式得,y=4a+2b+c,因此4a+2b+c
20、1【详解】把x2代入函数的关系式得,y4a+2b+c,由图象可知当x2时,相应的y1,即:4a+2b+c1,故答案为:4a+2b+c1【点睛】考查二次函数的图象和性质,抛物线的性质可以从开口方向、对称轴、顶点坐标,以及图象过特殊点的性质三、解答题(共66分)19、(1)证明见解析;(2)8【分析】(1)过O作OEAB,根据垂径定理得到AE=BE,CE=DE,从而得到AC=BD;(2)由(1)可知,OEAB且OECD,连接OC,OA,再根据勾股定理求出CE及AE的长,根据AC=AECE即可得出结论【详解】解:(1)证明:如答图,过点O作OEAB于点E,AE=BE,CE=DE,BEDE=AECE,
21、即AC=BD.(2)由(1)可知,OEAB且OECD,连接OC,OA,OA=10,OC=8,OE=6,.AC=AECE=8【点睛】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键20、(1),yx1;(2);(3)x2或1x0【解析】(1)将A坐标代入反比例解析式中求出m的值,确定出反比例解析式,再讲B坐标代入反比例解析式中求出a的值,确定出B的坐标,将A与B坐标代入一次函数求出k与b的值,即可确定出一次函数解析式;(2)对于一次函数,令y=0求出x的值,确定出C的坐标,即OC的长,三角形AOB面积=三角形AOC面积+三角形BOC面积,求出即可;(3)在图象上找出一次
22、函数值大于反比例函数值时x的范围即可【详解】(1)把A(2,1)代入y,得:m2,反比例函数的解析式为y,把B(1,n)代入y,得:n2,即B(1,2),将点A(2,1)、B(1,2)代入ykx+b,得:,解得:,一次函数的解析式为yx1;(2)在一次函数yx1中,令y0,得:x10,解得:x1,则SAOB11+12;(3)由图象可知,当x2或1x0时,一次函数的值大于反比例函数的值【点睛】本题考查了一次函数与反比例函数的交点问题,涉及的知识有:待定系数法求函数解析式,一次函数与坐标轴的交点,利用了数形结合的思想,熟练掌握待定系数法是解本题的关键21、(1)();(2)定价为19元时,利润最大
23、,最大利润是1210元.(3)不能销售完这批蜜柚. 【解析】(1)根据图象利用待定系数法可求得函数解析式,再根据蜜柚销售不会亏本以及销售量大于0求得自变量x的取值范围;(2)根据利润=每千克的利润销售量,可得关于x的二次函数,利用二次函数的性质即可求得;(3)先计算出每天的销量,然后计算出40天销售总量,进行对比即可得.【详解】(1)设 ,将点(10,200)、(15,150)分别代入,则,解得 ,蜜柚销售不会亏本,又, , ;(2) 设利润为元,则 =, 当 时, 最大为1210, 定价为19元时,利润最大,最大利润是1210元;(3) 当 时,11040=44004800,不能销售完这批蜜
24、柚.【点睛】 本题考查了一次函数的应用、二次函数的应用,弄清题意,找出数量间的关系列出函数解析式是解题的关键.22、(1)证明见解析;(2)ABC的面积为42.【分析】(1)在直角三角形中,表示,根据它们相等,即可得出结论(2)利用和勾股定理表示出线段长,根据,求出长【详解】(1)AD是BC上的高ADBCADB=90,ADC=90在RtABD和RtADC中,=,= 又已知=AC=BD(2)在RtADC中,故可设AD=1k,AC=13kCD=5kBC=BD+CD,又AC=BD,BC=13k+5k=12k 由已知BC=1, 12k=1k=AD=1k=1=223、(1)证明见解析;(2)或 ;(3)
25、【分析】(1)根据题意,作出图像,然后利用SAS证明,即可得到结论;(2)根据题意,由与相切,得到BMN=90,结合点M的位置,即可求出的度数;(3)根据题意,当点N恰好落在线段AB上时,BN的值最小;当点N落在BA延长线上时,BN的值最大,分别求出BN的值,即可得到答案.【详解】解:(1)如图,补全图形,证明:, ,;(2)根据题意,连接MN,与相切,BMN=90,MNC是等腰直角三角形,CMN=45,如上图所示,BMC=;如上图所示,BMC=;综合上述,的度数为:或;故答案为:或; (3)根据题意,当点N恰好落在线段AB上时,BN的值最小;如图所示,AN=BM=1,;当点N落在BA延长线上时,BN的值最大,如图所示,由AN=BN=1,BN=BA+AN=2+1=3;的最小值为1;的最大值为3;故答案为:1,3.【点睛】本题考查了圆的性质,全等三角形的旋转模型,等腰直角三角形的判定和性质,以及勾股定理,解题的关键是熟练掌握圆的动点问题,注意利用数形结合和分类讨论的思想进行解题.24、约为。【解析】过C作CFAB于F,于是得到AFC=90,解直角三角形即可得到结论【详解】解:如图,过点作于点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 家长安全教育培训记录课件
- 2026年2026年股权激励计划合同
- 2026年企业人力资源培训合同
- 2026年洗衣店承包经营合同
- 2026年导演影视合作合同
- 2026年安全畜禽养殖场合作合同协议
- 2026年2026年矿山挖掘机租赁合同
- 商铺租赁标准合同协议2026年补充条款
- 2026年宠物美容服务合同协议
- 2026年广告投放合规承诺合同协议
- 培训机构台账
- 泵车日常管理办法
- 骨科术后疼痛评估与护理查房
- 2025至2030中国考试系统行业市场发展现状分析及发展趋势与投资前景报告
- 中医针灸治疗妇科疾病
- 肿瘤科一科一品十佳案例
- 仓库工具赔偿管理制度
- CJ/T 312-2009建筑排水管道系统噪声测试方法
- 大棚施工合同(7篇)
- 25春国家开放大学《学前儿童音乐教育活动指导》期末大作业答案
- DB31/ 807.1-2014重点单位保安服务要求第1部分:基本要求
评论
0/150
提交评论