2023届江西省南昌市九年级数学第一学期期末学业水平测试模拟试题含解析_第1页
2023届江西省南昌市九年级数学第一学期期末学业水平测试模拟试题含解析_第2页
2023届江西省南昌市九年级数学第一学期期末学业水平测试模拟试题含解析_第3页
2023届江西省南昌市九年级数学第一学期期末学业水平测试模拟试题含解析_第4页
2023届江西省南昌市九年级数学第一学期期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2022-2023学年九上数学期末模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1将0.000102用科学记数法表示为()ABCD2P(3,-2)关于原点对称的点的坐标是( )A(3,2)B(-3,2)C(-3,-2)D(3,-2)3下列命题中,真命题是()A对角线相等的四边形是矩形B对角线互相垂直的四边形是菱形C对角线互相平

2、分的四边形不一定是平行四边形D对角线互相垂直平分且相等的四边形一定是正方形4如图,缩小后变为,其中、的对应点分别为、,点、均在图中格点上,若线段上有一点,则点在上对应的点的坐标为()ABCD5已知一斜坡的坡比为,坡长为26米,那么坡高为( )A米B米C13米D米6如图,正方形ABCD中,点EF分别在BC、CD上,AEF是等边三角形,连AC交EF于G,下列结论:BAE=DAF=15;AG=GC;BE+DF=EF;SCEF=2SABE,其中正确的个数为()A1B2C3D47如图,已知梯形ABCO的底边AO在轴上,BCAO,ABAO,过点C的双曲线交OB于D,且OD:DB=1:2,若OBC的面积等于

3、3,则k的值()A等于2B等于 C等于 D无法确定8一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、2、1随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之和为偶数的概率是( )ABCD9下列四张印有汽车品牌标志图案的卡片中,是中心对称图形的卡片是()ABCD10如图,点C、D在圆O上,AB是直径,BOC=110,ADOC,则AOD=( )A70B60C50D4011如图,某水库堤坝横断面迎水坡AB的坡比是1:,堤坝高BC=50m,则应水坡面AB的长度是( )A100mB100mC150mD50m12如图,在平面直角坐标系中,梯形OACB的顶点O是坐标原点

4、,OA边在y轴正半轴上,OB边在x轴正半轴上,且OABC,双曲线y=(x0)经过AC边的中点,若S梯形OACB=4,则双曲线y=的k值为()A5B4C3D2二、填空题(每题4分,共24分)13在平面直角坐标系中,正方形ABCD的位置如图所示,点的坐标为,点的坐标为,延长交轴于点,作正方形,延长交轴于点,作正方形,按这样的规律进行下去,第个正方形的面积为_ 14若一个反比例函数的图像经过点和,则这个反比例函数的表达式为_15如图,已知正方形ABCD的边长为1,点M是BC边上的动点(不与B,C重合),点N是AM的中点,过点N作EFAM,分别交AB,BD,CD于点E,K,F,设BMx(1)AE的长为

5、_(用含x的代数式表示);(2)设EK2KF,则的值为_16由4m7n,可得比例式_.17如图,是的直径,点在上,且,垂足为,则_18如果向量a、b、x满足关系式2a(x3b)4b,那么x_(用向量a、b表示)三、解答题(共78分)19(8分)如图,和都是等腰直角三角形,的顶点与的斜边的中点重合,将绕点旋转,旋转过程中,线段与线段相交于点,射线与线段相交于点,与射线相交于点.(1)求证:;(2)求证:平分;(3)当,求的长.20(8分)如图,四边形ABCD中,AB=AD,BAD=60,BCD=30,将AC绕着点A顺时针旋转60得AE,连接BE,CE(1)求证:ADCABE;(2)求证:(3)若

6、AB=2,点Q在四边形ABCD内部运动,且满足,直接写出点Q运动路径的长度21(8分)计算:|-2|+21cos61(1)122(10分)如图,方格纸中每个小正方形的边长都是单位1,ABC的三个顶点都在格点(即这些小正方形的顶点)上,且它们的坐标分别是A(2,3),B(5,1),C(1,3),结合所给的平面直角坐标系,解答下列问题:(1)请在如图坐标系中画出ABC;(2)画出ABC关于y轴对称的ABC,并写出ABC各顶点坐标。23(10分)已知是上一点,.()如图,过点作的切线,与的延长线交于点,求的大小及的长;()如图,为上一点,延长线与交于点,若,求的大小及的长.24(10分)在平面直角坐

7、标系中,抛物线的顶点为P,且与y轴交于点A,与直线交于点B,C(点B在点C的左侧).(1)求抛物线的顶点P的坐标(用含a的代数式表示);(2)横、纵坐标都是整数的点叫做整点,记抛物线与线段AC围成的封闭区域(不含边界)为“W区域”.当时,请直接写出“W区域”内的整点个数;当“W区域”内恰有2个整点时,结合函数图象,直接写出a的取值范围.25(12分)如图,在某一路段,规定汽车限速行驶,交通警察在此限速路段的道路上设置了监测区,其中点C、D为监测点,已知点C、D、B在同一直线上,且ACBC,CD400米,tanADC2,ABC35(1)求道路AB段的长(结果精确到1米)(2)如果道路AB的限速为

8、60千米/时,一辆汽车通过AB段的时间为90秒,请你判断该车是否是超速,并说明理由;参考数据:sin350.5736,cos350.8192,tan350.700226某校在向贫困地区捐书活动中全体师生积极捐书.为了解所捐书籍的种类,某同学对部分书籍进行了抽样调查,并根据调查数据绘制了如图所示不完整统计图.请根据统计图回答下面问题:(1)本次抽样调查的书籍有多少本?请通过计算补全条形统计图;(2)求出图中表示科普类书籍的扇形圆心角度数;(3)本次活动师生共捐书本,请估计有多少本文学类书籍?参考答案一、选择题(每题4分,共48分)1、A【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式

9、为a10n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:0.000102=1.02104,故答案为:【点睛】本题考查用科学记数法表示较小的数,一般形式为a10n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定2、B【解析】根据平面坐标系中点P(x,y)关于原点对称点是(-x,-y) 即可【详解】解:关于原点对称的点的横纵坐标都互为相反数,因此P(3,-2)关于原点对称的点的坐标是(-3,2)故答案为B【点睛】本题考查关于原点对称点的坐标的关系,解题的关键是理解并识记关于原点对称点的特点3、D【分析

10、】根据矩形的判定、菱形的判定、平行四边形和正方形的判定判断即可【详解】解:A、对角线相等的平行四边形是矩形,原命题是假命题;B、对角线互相垂直的平行四边形是菱形,原命题是假命题;C、对角线互相平分的四边形一定是平行四边形,原命题是假命题;D、对角线互相垂直平分且相等的四边形一定是正方形,原命题是真命题;故选:D【点睛】此题主要考查了命题与定理,正确把握特殊四边形的判定方法是解题关键4、D【分析】根据A,B两点坐标以及对应点C,D点的坐标得出坐标变化规律,进而得出P的坐标【详解】解:ABO缩小后变为CDO,其中A、B的对应点分别为C、D,点A、B、C、D均在图中在格点上,即A点坐标为:(4,6)

11、,B点坐标为:(6,2),C点坐标为:(2,3),D点坐标为:(3,1),线段AB上有一点P(m,n),则点P在CD上的对应点P的坐标为:()故选D【点睛】此题主要考查了点的坐标的确定,位似图形的性质,根据已知得出对应点坐标的变化是解题关键5、C【分析】根据坡比算出坡角,再根据坡角算出坡高即可.【详解】解:设坡角为坡度.坡高=坡长.故选:C.【点睛】本题考查三角函数的应用,关键在于理解题意,利用三角函数求出坡角.6、C【解析】通过条件可以得出ABEADF而得出BAE=DAF,BE=DF,由正方形的性质就可以得出EC=FC,就可以得出AC垂直平分EF,设EC=x,用含x的式子表示的BE、 EF,

12、利用三角形的面积公式分别表示出SCEF和2SABE再通过比较大小就可以得出结论.【详解】四边形ABCD是正方形,AB=AD,B=D=90AEF等边三角形,AE=AF,EAF=60BAE+DAF=30在RtABE和RtADF中,RtABERtADF(HL),BE=DF,BC=CD,BCBE=CDDF,即CE=CF,AC是EF的垂直平分线,AC平分EAF,EAC=FAC=60=30,BAC=DAC=45,BAE=DAF=15,故正确;设EC=x,则FC=x,由勾股定理,得EF=x,CG=EF=x,AG=AEsin60=EFsin60=2CGsin60=2CG,AG=CG,故正确;由知:设EC=x,

13、EF=x,AC=CG+AG=CG+CG=,AB=,BE=ABCE=x=,BE+DF=2=(1)xx,故错误;SCEF=,SABE=BEAB=,SCEF=2SABE,故正确,所以本题正确的个数有3个,分别是,故选C【点睛】本题考查了正方形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,等边三角形的性质的运用,三角形的面积公式的运用,解答本题时运用勾股定理的性质解题时关键7、B【解析】如图分别过D作DEY轴于E,过C作CFY轴于F,则ODEOBF,OD:DB=1:2相似比= 1:3面积比= OD:DB=1:9即又解得K=故选B8、D【解析】画树状图展示所有16种等可能的结果数,找出两次

14、抽取的卡片上数字之和为偶数的结果数,然后根据概率公式求解【详解】画树状图为:共有16种等可能的结果数,其中两次抽取的卡片上数字之和为偶数的结果数为10,所以两次抽取的卡片上数字之和为偶数的概率故选D【点睛】本题考查了列表法与树状图法利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率9、C【解析】试题分析:由中心对称图形的概念可知,这四个图形中只有第三个是中心对称图形,故答案选C考点:中心对称图形的概念10、D【分析】根据平角的定义求得AOC的度数,再根据平行线的性质及三角形内角和定理即可求得AOD的度数【详解】BOC110

15、,BOCAOC180AOC70ADOC,ODOADA70AOD1802A40故选:D【点睛】此题考查圆内角度求解,解题的关键是熟知圆的基本性质、平行线性质及三角形内角和定理的运用11、A【解析】堤坝横断面迎水坡AB的坡比是1:,BC=50,AC=50,(m)故选A12、D【分析】过的中点作轴交轴于,交于,作轴于,如图,先根据“”证明,则,得到,再利用得到,然后根据反比例函数系数的几何意义得,再去绝对值即可得到满足条件的的值.【详解】过的中点作轴交轴于,交于,作轴于,如图,在和中,(),而,.故选:.【点睛】本题考查了反比例函数系数的几何意义:从反比例函数图象上任意一点向轴于轴作垂线,垂线与坐标

16、轴所围成的矩形面积为.二、填空题(每题4分,共24分)13、【分析】推出AD=AB,DAB=ABC=ABA1=90=DOA,求出ADO=BAA1,证DOAABA1,得出,求出AB,BA1,求出边长A1C=,求出面积即可;求出第2个正方形的边长是,求出面积,再求出第3个正方形的面积;依此类推得出第n个正方形的边长,求出面积即可【详解】四边形ABCD是正方形,AD=AB,DAB=ABC=ABA1=90=DOA,ADO+DAO=90,DAO+BAA1=90,ADO=BAA1,DOA=ABA1,DOAABA1, ,AB=AD= BA1= 第2个正方形A1B1C1C的边长A1C=A1B+BC=,面积是

17、;同理第3个正方形的边长是面积是;第4个正方形的边长是 ,面积是 ,第n个正方形的边长是,面积是故答案为: 【点睛】本题考查了正方形的性质,相似三角形的性质和判定,勾股定理的应用,解此题的关键是根据计算的结果得出规律,题目比较好,但是一道比较容易出错的题目14、【分析】这个反比例函数的表达式为,将A、B两点坐标代入,列出方程即可求出k的值,从而求出反比例函数的表达式【详解】解:设这个反比例函数的表达式为将点和代入,得化简,得解得:(反比例函数与坐标轴无交点,故舍去)解得:这个反比例函数的表达式为故答案为:【点睛】此题考查的是求反比例函数的表达式,掌握待定系数法是解决此题的关键15、 x 【分析

18、】(1)根据勾股定理求得AM,进而得出AN,证得AENAMB,由相似三角形的性质即可求得AE的长;(2)连接AK、MG、CK,构建全等三角形和直角三角形,证明AKMKCK,再根据四边形的内角和定理得AKM90,利用直角三角形斜边上的中线等于斜边的一半得NKAMAN,然后根据相似三角形的性质求得x,即可得出x【详解】(1)解:正方形ABCD的边长为1,BMx,AM,点N是AM的中点,AN,EFAM,ANE90,ANEABM90,EANMAB,AENAMB,即,AE,故答案为:;(2)解:如图,连接AK、MG、CK,由正方形的轴对称性ABKCBK,AKCK,KABKCB,EFAM,N为AM中点,A

19、KMK,MKCK,KMCKCM,KABKMC,KMB+KMC180,KMB+KAB180,又四边形ABMK的内角和为360,ABM90,AKM90,在RtAKM中,AM为斜边,N为AM的中点,KNAMAN,AENAMB,x,x,故答案为:x【点睛】本题是四边形的综合题,考查了正方形的性质,相似三角形的判定和性质,全等三角形判定和性质,等腰三角形的性质,以及直角三角形斜边.上的中线的性质,证得KN=AN是解题的关键16、【分析】根据比例的基本性质,将原式进行变形,即等积式化比例式后即可得.【详解】解:4m7n,.故答案为:【点睛】本题考查比例的基本性质,将比例进行变形是解答此题的关键.17、2【

20、分析】先连接OC,在RtODC中,根据勾股定理得出OC的长,即可求得答案【详解】连接OC,如图,CD=4,OD=3,在RtODC中,故答案为:【点睛】此题考查了圆的认识,根据题意作出辅助线,构造出直角三角形是解答此题的关键18、2ab【解析】根据平面向量的加减法计算法则和方程解题【详解】2a-x-3b=4b 2a-x-b=0 x=2a-b 故答案是2a-b【点睛】本题主要考查平面向量,此题是利用方程思想求得向量的值的,难度不大三、解答题(共78分)19、(1)详见解析;(2)详见解析;(3)5.【分析】(1)由ABC和DEF是两个等腰直角三角形,易得BCDEF45,然后利用三角形的外角的性质,

21、即可得BEPEQC,则可证得BPECEQ;(2)只要证明BPEEPQ,可得BEPEQP,且BEPCQE,可得结论;(3)由相似三角形的性质可求BE3EC,可求AP4,AQ3,即可求PQ的长【详解】解:(1)和是两个等腰直角三角形,即,(2),,,,,且,,平分(3),且,.【点睛】本题考查相似形综合题、等腰直角三角形的性质,相似三角形的判定和性质,勾股定理等知识,解题的关键是正确寻找相似三角形解决问题,属于中考压轴题20、(1)证明见解析;(2)证明见解析;(3)【解析】(1)推出DAC=BAE,则可直接由SAS证明ADCABE;(2)证明BCE是直角三角形,再证DC=BE,AC=CE即可推出

22、结论;(3)如图2,设Q为满足条件的点,将AQ绕着点A顺时针旋转60度得AF,连接QF,BF,QB,DQ,AF,证ADQABF,由勾股定理的逆定理证FBQ=90,求出DQB=150,确定点Q的路径为过B,D,C三点的圆上,求出的长即可【详解】(1)证明:CAE=DAB=60,CAE-CAB=DAB-CAB,DAC=BAE,又AD=AB,AC=AE,ADCABE(SAS);(2)证明:在四边形ABCD中,ADC+ABC=360-DAB-DCB=270,ADCABE,ADC=ABE,CD=BE,ABC+ABE=ABC+ADC=270,CBE=360-(ABC+ABE)=90,CE2=BE2+BC2

23、,又AC=AE,CAE=60,ACE是等边三角形,CE=AC=AE,AC2=DC2+BC2;(3)解:如图2,设Q为满足条件的点,将AQ绕着点A顺时针旋转60度得AF,连接QF,BF,QB,DQ,AF,则DAQ=BAF,AQ=QF,AQF为等边三角形,又AD=AB,ADQABF(SAS),AQ=FQ,BF=DQ,AQ2=BQ2+DQ2,FQ2=BQ2+BF2,FBQ=90,AFB+AQB=360-(QAF+FBQ)=210,AQD+AQB=210,DQB=360-(AQD+AQB)=150,点Q的路径为过B,D,C三点的圆上,如图2,设圆心为O,则BOD=2DCB=60,连接DB,则ODB与A

24、DB为等边三角形,DO=DB=AB=2,点Q运动的路径长为:【点睛】本题考查了旋转的性质,等边三角形的性质,四边形的内角和,勾股定理的逆定理,圆的有关性质及计算等,综合性较强,解题关键是能够熟练掌握并灵活运用圆的有关性质21、1- 【解析】利用零指数幂和绝对值的性质、特殊角的三角函数值、负指数次幂的性质进行计算即可【详解】解:原式【点睛】本题考查了零指数幂和绝对值的性质、特殊角的三角函数值、负指数次幂的性质,熟练掌握性质及定义是解题的关键22、(1)图见解析;(2)图见解析;A(-2,-3),B(-5,-1),C(-1,3)【分析】(1)在坐标系内描出各点,顺次连接各点即可;(2)分别作出各点

25、关于y轴的对称点,再顺次连接,并写出各点坐标即可;【详解】(1)如图,ABC为所求;(2)如图,ABC为所求;A(-2,-3),B(-5,-1),C(-1,3)【点睛】本题考查的是作图轴对称变换,熟知轴对称的性质是解答此题的关键23、(),PA4;(),【分析】()易得OAC是等边三角形即AOC=60,又由PC是O的切线故PCOC,即OCP=90可得P的度数,由OC=4可得PA的长度()由()知OAC是等边三角形,易得APC=45;过点C作CDAB于点D,易得AD=AO=CO,在RtDOC中易得CD的长,即可求解【详解】解:()AB是O的直径,OA是O的半径.OAC=60,OA=OC,OAC是等边三角形.AOC=60.PC是O的切线,OC为O的半径,PCOC,即OCP=90P=30.PO=2CO=8.PA=PO-AO=PO-CO=4.()由()知OAC是等边三角形,AOC=ACO=OAC=60AQC=30.AQ=CQ,ACQ=QAC=75ACQ-ACO=QAC-OAC=15即QCO=QAO=15.APC=AQC+QAO=45.如图,过点C作CDAB于点D.OAC是等边三角形,CDAB于点D,DCO=30,AD=AO=CO=2.APC=45,DCQ=APC=45PD=CD在RtDOC中,OC=4,DCO=30,OD=2,CD=2PD=C

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论