2021-2022学年安徽省淮北市濉溪中学高三第二次诊断性检测数学试卷含解析_第1页
2021-2022学年安徽省淮北市濉溪中学高三第二次诊断性检测数学试卷含解析_第2页
2021-2022学年安徽省淮北市濉溪中学高三第二次诊断性检测数学试卷含解析_第3页
2021-2022学年安徽省淮北市濉溪中学高三第二次诊断性检测数学试卷含解析_第4页
2021-2022学年安徽省淮北市濉溪中学高三第二次诊断性检测数学试卷含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1在中,为边上的中点,且,则( )ABCD2函数图像可能是( )ABCD3已知f(x),g(x)

2、都是偶函数,且在0,+)上单调递增,设函数F(x)=f(x)+g(1-x)-|f(x)-g(1-x)|,若a0,则( )AF(-a)F(a)且F(1+a)F(1-a)BF(-a)F(a)且F(1+a)F(1-a)CF(-a)F(a)且F(1+a)F(1-a)DF(-a)F(a)且F(1+a)F(1-a)4已知复数,为的共轭复数,则( )ABCD5根据散点图,对两个具有非线性关系的相关变量x,y进行回归分析,设u= lny,v=(x-4)2,利用最小二乘法,得到线性回归方程为=0.5v+2,则变量y的最大值的估计值是( )AeBe2Cln2D2ln26已知复数(1+i)(a+i)为纯虚数(i为虚

3、数单位),则实数a=( )A-1B1C0D27设函数(,为自然对数的底数),定义在上的函数满足,且当时,若存在,且为函数的一个零点,则实数的取值范围为( )ABCD8设是虚数单位,则( )ABC1D29已知纯虚数满足,其中为虚数单位,则实数等于( )AB1CD210在平面直角坐标系中,锐角顶点在坐标原点,始边为x轴正半轴,终边与单位圆交于点,则( )ABCD11已知,则下列关系正确的是( )ABCD12定义,已知函数,则函数的最小值为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13某公园划船收费标准如表:某班16名同学一起去该公园划船,若每人划船的时间均为1小时,每只租船必须

4、坐满,租船最低总费用为_元,租船的总费用共有_种可能.14已知数列的前项和为且满足,则数列的通项_15如图,在矩形中,为边的中点,分别以、为圆心,为半径作圆弧、(在线段上).由两圆弧、及边所围成的平面图形绕直线旋转一周,则所形成的几何体的体积为 .16已知三棱锥,是边长为4的正三角形,分别是、的中点,为棱上一动点(点除外),若异面直线与所成的角为,且,则_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知等差数列满足,.(l)求等差数列的通项公式;(2)设,求数列的前项和.18(12分)已知函数当时,求函数的极值;若存在与函数,的图象都相切的直线,求实数的取值范

5、围19(12分)已知函数,(1)若,求实数的值(2)若,求正实数的取值范围20(12分)如图所示,四棱锥PABCD中,PC底面ABCD,PCCD2,E为AB的中点,底面四边形ABCD满足ADCDCB90,AD1,BC1()求证:平面PDE平面PAC;()求直线PC与平面PDE所成角的正弦值;()求二面角DPEB的余弦值21(12分)设,其中(1)当时,求的值;(2)对,证明:恒为定值22(10分)年,山东省高考将全面实行“选”的模式(即:语文、数学、外语为必考科目,剩下的物理、化学、历史、地理、生物、政治六科任选三科进行考试).为了了解学生对物理学科的喜好程度,某高中从高一年级学生中随机抽取人

6、做调查.统计显示,男生喜欢物理的有人,不喜欢物理的有人;女生喜欢物理的有人,不喜欢物理的有人.(1)据此资料判断是否有的把握认为“喜欢物理与性别有关”;(2)为了了解学生对选科的认识,年级决定召开学生座谈会.现从名男同学和名女同学(其中男女喜欢物理)中,选取名男同学和名女同学参加座谈会,记参加座谈会的人中喜欢物理的人数为,求的分布列及期望.,其中.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1A【解析】由为边上的中点,表示出,然后用向量模的计算公式求模.【详解】解:为边上的中点,故选:A【点睛】在三角形中,考查中点向量公式和向量

7、模的求法,是基础题.2D【解析】先判断函数的奇偶性可排除选项A,C,当时,可分析函数值为正,即可判断选项.【详解】,即函数为偶函数,故排除选项A,C,当正数越来越小,趋近于0时,所以函数,故排除选项B,故选:D【点睛】本题主要考查了函数的奇偶性,识别函数的图象,属于中档题.3A【解析】试题分析:由题意得,F(x)=2g(1-x),f(x)g(1-x)2f(x),f(x)g(1-x),F(-a)=2g(1+a),f(a)=f(-a)g(1+a)2f(-a),f(a)=f(-a)g(1+a),F(a)=2g(1-a),f(a)g(1-a)2f(a),f(a)0,(a+1)2-(a-1)2=4a0,

8、|1+a|a-1|g(1+a)g(1-a),若f(a)g(1+a):F(-a)=2g(1+a),F(a)=2g(1-a),F(-a)F(a),若g(1-a)f(a)g(1+a):F(-a)=2f(-a)=2f(a),F(a)=2g(1-a),F(-a)F(a),若f(a)g(1-a):F(-a)=2f(-a)=2f(a),F(a)=2f(a),F(-a)=F(a),综上可知F(-a)F(a),同理可知F(1+a)F(1-a),故选A.考点:1.函数的性质;2.分类讨论的数学思想.【思路点睛】本题在在解题过程中抓住偶函数的性质,避免了由于单调性不同导致1-a与1+a大小不明确的讨论,从而使解题过

9、程得以优化,另外,不要忘记定义域,如果要研究奇函数或者偶函数的值域、最值、单调性等问题,通常先在原点一侧的区间(对奇(偶)函数而言)或某一周期内(对周期函数而言)考虑,然后推广到整个定义域上.4C【解析】求出,直接由复数的代数形式的乘除运算化简复数.【详解】.故选:C【点睛】本题考查复数的代数形式的四则运算,共轭复数,属于基础题.5B【解析】将u= lny,v=(x-4)2代入线性回归方程=-0.5v+2,利用指数函数和二次函数的性质可得最大估计值.【详解】解:将u= lny,v=(x4)2代入线性回归方程=0.5v+2得:,即,当时,取到最大值2,因为在上单调递增,则取到最大值.故选:B.【

10、点睛】本题考查了非线性相关的二次拟合问题,考查复合型指数函数的最值,是基础题,.6B【解析】化简得到z=a-1+a+1i,根据纯虚数概念计算得到答案.【详解】z=1+ia+i=a-1+a+1i为纯虚数,故a-1=0且a+10,即a=1.故选:B.【点睛】本题考查了根据复数类型求参数,意在考查学生的计算能力.7D【解析】先构造函数,由题意判断出函数的奇偶性,再对函数求导,判断其单调性,进而可求出结果.【详解】构造函数,因为,所以,所以为奇函数,当时,所以在上单调递减,所以在R上单调递减.因为存在,所以,所以,化简得,所以,即令,因为为函数的一个零点,所以在时有一个零点因为当时,所以函数在时单调递

11、减,由选项知,又因为,所以要使在时有一个零点,只需使,解得,所以a的取值范围为,故选D.【点睛】本题主要考查函数与方程的综合问题,难度较大.8C【解析】由,可得,通过等号左右实部和虚部分别相等即可求出的值.【详解】解:, ,解得:.故选:C.【点睛】本题考查了复数的运算,考查了复数相等的涵义.对于复数的运算类问题,易错点是把 当成进行运算.9B【解析】先根据复数的除法表示出,然后根据是纯虚数求解出对应的的值即可.【详解】因为,所以,又因为是纯虚数,所以,所以.故选:B.【点睛】本题考查复数的除法运算以及根据复数是纯虚数求解参数值,难度较易.若复数为纯虚数,则有.10A【解析】根据单位圆以及角度

12、范围,可得,然后根据三角函数定义,可得,最后根据两角和的正弦公式,二倍角公式,简单计算,可得结果.【详解】由题可知:,又为锐角所以,根据三角函数的定义:所以由所以故选:A【点睛】本题考查三角函数的定义以及两角和正弦公式,还考查二倍角的正弦、余弦公式,难点在于公式的计算,识记公式,简单计算,属基础题.11A【解析】首先判断和1的大小关系,再由换底公式和对数函数的单调性判断的大小即可.【详解】因为,所以,综上可得.故选:A【点睛】本题考查了换底公式和对数函数的单调性,考查了推理能力与计算能力,属于基础题12A【解析】根据分段函数的定义得,则,再根据基本不等式构造出相应的所需的形式,可求得函数的最小

13、值.【详解】依题意得,则,(当且仅当,即时“”成立.此时,,的最小值为,故选:A.【点睛】本题考查求分段函数的最值,关键在于根据分段函数的定义得出,再由基本不等式求得最值,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13360 10 【解析】列出所有租船的情况,分别计算出租金,由此能求出结果.【详解】当租两人船时,租金为:元,当租四人船时,租金为:元,当租1条四人船6条两人船时,租金为:元,当租2条四人船4条两人船时,租金为:元,当租3条四人船2条两人船时,租金为:元,当租1条六人船5条2人船时,租金为:元,当租2条六人船2条2人船时,租金为:元,当租1条六人船1条四人船3条2

14、人船时,租金为:元,当租1条六人船2条四人船1条2人船时,租金为:元,当租2条六人船1条四人船时,租金为:元,综上,租船最低总费用为360元,租船的总费用共有10种可能.故答案为:360,10.【点睛】本小题主要考查分类讨论的数学思想方法,考查实际应用问题,属于基础题.14【解析】先求得时;再由可得时,两式作差可得,进而求解.【详解】当时,解得;由,可知当时,两式相减,得,即,所以数列是首项为,公比为的等比数列,所以,故答案为:【点睛】本题考查由与的关系求通项公式,考查等比数列的通项公式的应用.15【解析】由题意,可得所得到的几何体是由一个圆柱挖去两个半球而成;其中,圆柱的底面半径为1,母线长

15、为2;体积为;两个半球的半径都为1,则两个半球的体积为;则所求几何体的体积为.考点:旋转体的组合体.16【解析】取的中点,连接,取的中点,连接,直线与所成的角为,计算,根据余弦定理计算得到答案。【详解】取的中点,连接,依题意可得,所以平面,所以,因为,分别、的中点,所以,因为,所以,所以平面,故,故,故两两垂直。取的中点,连接,因为,所以直线与所成的角为,设,则,所以,化简得,解得,即.故答案为:.【点睛】本题考查了根据异面直线夹角求长度,意在考查学生的计算能力和空间想象能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17 (1);(2).【解析】试题分析:(1)设等差数列

16、满的首项为,公差为,代入两等式可解。(2)由(1),代入得,所以通过裂项求和可求得。试题解析:(1)设等差数列的公差为,则由题意可得,解得.所以.(2)因为,所以.所以 .18(1)当时,函数取得极小值为,无极大值;(2)【解析】试题分析:(1),通过求导分析,得函数取得极小值为,无极大值;(2),所以,通过求导讨论,得到的取值范围是试题解析:(1)函数的定义域为当时,所以 所以当时,当时,所以函数在区间单调递减,在区间单调递增,所以当时,函数取得极小值为,无极大值; (2)设函数上点与函数上点处切线相同,则 所以 所以,代入得: 设,则不妨设则当时,当时,所以在区间上单调递减,在区间上单调递

17、增, 代入可得:设,则对恒成立,所以在区间上单调递增,又所以当时,即当时, 又当时 因此当时,函数必有零点;即当时,必存在使得成立;即存在使得函数上点与函数上点处切线相同又由得:所以单调递减,因此所以实数的取值范围是19(1)1(2)【解析】(1)求得和,由,得,令,令导数求得函数的单调性,利用,即可求解(2)解法一:令,利用导数求得的单调性,转化为,令(),利用导数得到的单调性,分类讨论,即可求解解法二:可利用导数,先证明不等式,令(),利用导数,分类讨论得出函数的单调性与最值,即可求解【详解】(1)由题意,得, 由,得,令,则,因为,所以在单调递增, 又,所以当时,单调递增; 当时,单调递

18、减;所以,当且仅当时等号成立 故方程有且仅有唯一解,实数的值为1 (2)解法一:令(),则,所以当时,单调递增; 当时,单调递减;故 令(),则(i)若时,在单调递增,所以,满足题意 (ii)若时,满足题意(iii)若时,在单调递减,所以不满足题意 综上述: 解法二:先证明不等式,(*)令,则当时,单调递增,当时,单调递减,所以,即变形得,所以时,所以当时,.又由上式得,当时,.因此不等式(*)均成立 令(),则,(i)若时,当时,单调递增; 当时,单调递减;故 (ii)若时,在单调递增,所以 因此,当时,此时,则需由(*)知,(当且仅当时等号成立),所以 当时,此时,则当时, (由(*)知)

19、;当时,(由(*)知)故对于任意,综上述:【点睛】本题主要考查导数在函数中的综合应用,着重考查了转化与化归思想、分类讨论、及逻辑推理能力与计算能力,对于恒成立问题,通常要构造新函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造新函数,直接把问题转化为函数的最值问题20()证明见解析()()【解析】()由题知,如图以点为原点,直线分别为轴,建立空间直角坐标系,计算,证明,从而平面PAC,即可得证;()求解平面PDE的一个法向量,计算,即可得直线PC与平面PDE所成角的正弦值;()求解平面PBE的一个法向量,计算,即可得二面角DPEB的余弦值【详解】()PC底面ABCD, 如图以点为原点,直线分别为轴,建立空间直角坐标系

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论