2021-2022学年湖北省孝感市高三六校第一次联考数学试卷含解析_第1页
2021-2022学年湖北省孝感市高三六校第一次联考数学试卷含解析_第2页
2021-2022学年湖北省孝感市高三六校第一次联考数学试卷含解析_第3页
2021-2022学年湖北省孝感市高三六校第一次联考数学试卷含解析_第4页
2021-2022学年湖北省孝感市高三六校第一次联考数学试卷含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知,是椭圆的左、右焦点,过的直线交椭圆于两点.若依次构成等差数列,且,则椭圆的离心率为ABCD2椭圆的焦点为,点在椭圆上,若,则的大小为( )ABCD3某人2018年的家庭总收人为

2、元,各种用途占比如图中的折线图,年家庭总收入的各种用途占比统计如图中的条形图,已知年的就医费用比年的就医费用增加了元,则该人年的储畜费用为( )A元B元C元D元4观察下列各式:,根据以上规律,则( )ABCD5已知定义在上的奇函数满足:(其中),且在区间上是减函数,令,则,的大小关系(用不等号连接)为( )ABCD6已知、分别是双曲线的左、右焦点,过作双曲线的一条渐近线的垂线,分别交两条渐近线于点、,过点作轴的垂线,垂足恰为,则双曲线的离心率为( )ABCD7在中,是的中点,点在上且满足,则等于( )ABCD8已知集合,定义集合,则等于( )ABCD9已知函数(,且)在区间上的值域为,则( )

3、ABC或D或410已知实数满足不等式组,则的最小值为( )ABCD11在精准扶贫工作中,有6名男干部、5名女干部,从中选出2名男干部、1名女干部组成一个扶贫小组分到某村工作,则不同的选法共有( )A60种B70种C75种D150种12设函数(,为自然对数的底数),定义在上的函数满足,且当时,若存在,且为函数的一个零点,则实数的取值范围为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知,满足约束条件则的最小值为_.14已知三棱锥中,且二面角的大小为,则三棱锥外接球的表面积为_.15已知,则_。16一个村子里一共有个人,其中一个人是谣言制造者,他编造了一条谣言并告诉了另一个人

4、,这个人又把谣言告诉了第三个人,如此等等在每一次谣言传播时,谣言的接受者都是在其余个村民中随机挑选的,当谣言传播次之后,还没有回到最初的造谣者的概率是_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图,在四棱锥中,平面, 底面是矩形,分别是,的中点.()求证:平面;()设, 求三棱锥的体积.18(12分)设等差数列满足,.(1)求数列的通项公式;(2)求的前项和及使得最小的的值.19(12分)已知在中,角,的对边分别为,的面积为.(1)求证:;(2)若,求的值.20(12分)已知数列满足,(1)求数列的通项公式;(2)若,求数列的前项和21(12分)已知是公比为

5、的无穷等比数列,其前项和为,满足,_是否存在正整数,使得?若存在,求的最小值;若不存在,说明理由从,这三个条件中任选一个,补充在上面问题中并作答22(10分)在国家“大众创业,万众创新”战略下,某企业决定加大对某种产品的研发投入.为了对新研发的产品进行合理定价,将该产品按事先拟定的价格试销,得到一组检测数据如表所示:试销价格(元)产品销量 (件)已知变量且有线性负相关关系,现有甲、乙、丙三位同学通过计算求得回归直线方程分别为:甲; 乙;丙,其中有且仅有一位同学的计算结果是正确的.(1)试判断谁的计算结果正确?(2)若由线性回归方程得到的估计数据与检测数据的误差不超过,则称该检测数据是“理想数据

6、”,现从检测数据中随机抽取个,求“理想数据”的个数的分布列和数学期望.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1D【解析】如图所示,设依次构成等差数列,其公差为.根据椭圆定义得,又,则,解得,.所以,.在和中,由余弦定理得,整理解得.故选D2C【解析】根据椭圆的定义可得,再利用余弦定理即可得到结论.【详解】由题意,又,则,由余弦定理可得.故.故选:C.【点睛】本题考查椭圆的定义,考查余弦定理,考查运算能力,属于基础题.3A【解析】根据 2018年的家庭总收人为元,且就医费用占 得到就医费用,再根据年的就医费用比年的就医费用增

7、加了元,得到年的就医费用,然后由年的就医费用占总收人,得到2019年的家庭总收人再根据储畜费用占总收人求解.【详解】因为2018年的家庭总收人为元,且就医费用占 所以就医费用因为年的就医费用比年的就医费用增加了元,所以年的就医费用元,而年的就医费用占总收人所以2019年的家庭总收人为而储畜费用占总收人所以储畜费用:故选:A【点睛】本题主要考查统计中的折线图和条形图的应用,还考查了建模解模的能力,属于基础题.4B【解析】每个式子的值依次构成一个数列,然后归纳出数列的递推关系后再计算【详解】以及数列的应用根据题设条件,设数字,构成一个数列,可得数列满足,则,故选:B【点睛】本题主要考查归纳推理,解

8、题关键是通过数列的项归纳出递推关系,从而可确定数列的一些项5A【解析】因为,所以,即周期为,因为为奇函数,所以可作一个周期-2e,2e示意图,如图在(,)单调递增,因为,因此,选点睛:函数对称性代数表示(1)函数为奇函数 ,函数为偶函数(定义域关于原点对称);(2)函数关于点对称,函数关于直线对称,(3)函数周期为T,则6B【解析】设点位于第二象限,可求得点的坐标,再由直线与直线垂直,转化为两直线斜率之积为可得出的值,进而可求得双曲线的离心率.【详解】设点位于第二象限,由于轴,则点的横坐标为,纵坐标为,即点,由题意可知,直线与直线垂直,因此,双曲线的离心率为.故选:B.【点睛】本题考查双曲线离

9、心率的计算,解答的关键就是得出、的等量关系,考查计算能力,属于中等题.7B【解析】由M是BC的中点,知AM是BC边上的中线,又由点P在AM上且满足可得:P是三角形ABC的重心,根据重心的性质,即可求解【详解】解:M是BC的中点,知AM是BC边上的中线,又由点P在AM上且满足P是三角形ABC的重心 又AM1故选B【点睛】判断P点是否是三角形的重心有如下几种办法:定义:三条中线的交点性质:或取得最小值坐标法:P点坐标是三个顶点坐标的平均数8C【解析】根据定义,求出,即可求出结论.【详解】因为集合,所以,则,所以.故选:C.【点睛】本题考查集合的新定义运算,理解新定义是解题的关键,属于基础题.9C【

10、解析】对a进行分类讨论,结合指数函数的单调性及值域求解.【详解】分析知,.讨论:当时,所以,所以;当时,所以,所以.综上,或,故选C.【点睛】本题主要考查指数函数的值域问题,指数函数的值域一般是利用单调性求解,侧重考查数学运算和数学抽象的核心素养.10B【解析】作出约束条件的可行域,在可行域内求的最小值即为的最小值,作,平移直线即可求解.【详解】作出实数满足不等式组的可行域,如图(阴影部分)令,则,作出,平移直线,当直线经过点时,截距最小,故,即的最小值为.故选:B【点睛】本题考查了简单的线性规划问题,解题的关键是作出可行域、理解目标函数的意义,属于基础题.11C【解析】根据题意,分别计算“从

11、6名男干部中选出2名男干部”和“从5名女干部中选出1名女干部”的取法数,由分步计数原理计算可得答案【详解】解:根据题意,从6名男干部中选出2名男干部,有种取法,从5名女干部中选出1名女干部,有种取法,则有种不同的选法;故选:C【点睛】本题考查排列组合的应用,涉及分步计数原理问题,属于基础题12D【解析】先构造函数,由题意判断出函数的奇偶性,再对函数求导,判断其单调性,进而可求出结果.【详解】构造函数,因为,所以,所以为奇函数,当时,所以在上单调递减,所以在R上单调递减.因为存在,所以,所以,化简得,所以,即令,因为为函数的一个零点,所以在时有一个零点因为当时,所以函数在时单调递减,由选项知,又

12、因为,所以要使在时有一个零点,只需使,解得,所以a的取值范围为,故选D.【点睛】本题主要考查函数与方程的综合问题,难度较大.二、填空题:本题共4小题,每小题5分,共20分。13【解析】画出可行域,通过平移基准直线到可行域边界位置,由此求得目标函数的最小值.【详解】画出可行域如下图所示,由图可知:可行域是由三点,构成的三角形及其内部,当直线过点时,取得最小值.故答案为:【点睛】本小题主要考查利用线性规划求目标函数的最值,考查数形结合的数学思想方法,属于基础题.14【解析】设的中心为T,AB的中点为N,AC中点为M,分别过M,T做平面ABC,平面PAB的垂线,则垂线的交点为球心O,将的长度求出或用

13、球半径表示,再利用余弦定理即可建立方程解得半径.【详解】设的中心为T,AB的中点为N,AC中点为M,分别过M,T做平面ABC,平面PAB的垂线,则垂线的交点为球心O,如图所示因为,所以,又二面角的大小为,则,所以,设外接球半径为R,则,在中,由余弦定理,得,即,解得,故三棱锥外接球的表面积.故答案为:.【点睛】本题考查三棱锥外接球的表面积问题,解决此类问题一定要数形结合,建立关于球的半径的方程,本题计算量较大,是一道难题.15【解析】由已知求,再利用和角正切公式,求得,【详解】因为所以cos因此.【点睛】本题考查了同角三角函数基本关系式与和角的正切公式。16【解析】利用相互独立事件概率的乘法公

14、式即可求解.【详解】第1次传播,谣言一定不会回到最初的人;从第2次传播开始,每1次谣言传播,第一个制造谣言的人被选中的概率都是,没有被选中的概率是次传播是相互独立的,故为故答案为:【点睛】本题考查了相互独立事件概率的乘法公式,考查了考生的分析能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17()见解析()【解析】()取中点,连,根据平行四边形,可得,进而证得平面平面,利用面面垂直的性质,得平面,又由,即可得到平面.()根据三棱锥的体积公式,利用等积法,即可求解.【详解】()取中点,连,由,可得,可得是平行四边形,则,又平面,平面平面,平面,平面,平面平面,是中

15、点,则,而平面平面,而,平面.()根据三棱锥的体积公式,得 .【点睛】本题主要考查了空间中线面位置关系的判定与证明,以及利用“等体积法”求解三棱锥的体积,其中解答中熟记线面位置关系的判定定理和性质定理,以及合理利用“等体积法”求解是解答的关键,着重考查了推理与论证能力,属于基础题.18(1)(2);时,取得最小值【解析】(1)设等差数列的公差为,由,结合已知,联立方程组,即可求得答案.(2)由(1)知,故可得,即可求得答案.【详解】(1)设等差数列的公差为,由及,得解得数列的通项公式为(2)由(1)知时,取得最小值.【点睛】本题解题关键是掌握等差数列通项公式和前项和公式,考查了分析能力和计算能

16、力,属于基础题.19(1)证明见解析;(2).【解析】(1)利用,利用正弦定理,化简即可证明(2)利用(1),得到当时,得出,得出,然后可得【详解】证明:(1)据题意,得,.又,.解:(2)由(1)求解知,.当时,.又,.【点睛】本题考查正弦与余弦定理的应用,属于基础题20(1);(2)【解析】(1)根据递推公式,用配凑法构造等比数列,求其通项公式,进而求出的通项公式;(2)求出数列的通项公式,利用错位相减法求数列的前项和.【详解】解:(1),是首项为,公比为的等比数列所以,(2).【点睛】本题考查了由数列的递推公式求通项公式,错位相减法求数列的前n项和的问题,属于中档题.21见解析【解析】选择或或,求出的值,然后利用等比数列的求和公式可得出关于的不等式,判断不等式是否存在符合条件的正整数解,在有解的情况下,解出不等式,进而可得出结论.【详解】选择:因为,所以,所以令,即,所以使得的正整数的最小值为;选择:因为,所以,因为,所以不存在满足条件的正整数;选择:因为,所以,所以令,即,整理得当为偶数时,原不等式无解;当为奇数时,原不等式等价于,所以使得的正整数的最小值为【点睛】本题考查了等比数列的通项公式求和公式,考查了推理能力与计算能力,属于中档题22(1)乙同学正确(2)分布列见解析, 【解析】(1)由已知可得甲不正确,求出样本

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论