版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知双曲线,点是直线上任意一点,若圆与双曲线的右支没有公共点,则双曲线的离心率取值范围是( )
2、ABCD2已知函数,则下列结论错误的是( )A函数的最小正周期为B函数的图象关于点对称C函数在上单调递增D函数的图象可由的图象向左平移个单位长度得到3从5名学生中选出4名分别参加数学,物理,化学,生物四科竞赛,其中甲不能参加生物竞赛,则不同的参赛方案种数为A48B72C90D964设命题:,则为A,B,C,D,5已知某几何体的三视图如图所示,则该几何体的体积是( )AB64CD326已知命题,那么为( )ABCD7在一个数列中,如果,都有(为常数),那么这个数列叫做等积数列,叫做这个数列的公积.已知数列是等积数列,且,公积为,则( )ABCD8已知函数是定义在上的奇函数,函数满足,且时,则(
3、)A2BC1D9执行如图所示的程序框图,如果输入,则输出属于( )ABCD10已知椭圆的左、右焦点分别为,上顶点为点,延长交椭圆于点,若为等腰三角形,则椭圆的离心率ABCD11某几何体的三视图如图所示,则该几何体的最长棱的长为( )ABCD12已知抛物线的焦点为,准线为,是上一点,是直线与抛物线的一个交点,若,则( )AB3CD2二、填空题:本题共4小题,每小题5分,共20分。13设为锐角,若,则的值为_14公比为正数的等比数列的前项和为,若,则的值为_15已知三棱锥中,则该三棱锥的外接球的表面积是_.16记实数中的最大数为,最小数为.已知实数且三数能构成三角形的三边长,若,则的取值范围是.三
4、、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知椭圆的左,右焦点分别为,直线与椭圆相交于两点;当直线经过椭圆的下顶点和右焦点时,的周长为,且与椭圆的另一个交点的横坐标为(1)求椭圆的方程;(2)点为内一点,为坐标原点,满足,若点恰好在圆上,求实数的取值范围.18(12分)如图,直线y=2x-2与抛物线x2=2py(p0)交于M1,M2两点,直线y=p2与(1)求p的值;(2)设A是直线y=p2上一点,直线AM2交抛物线于另一点M3,直线M1M19(12分)已知椭圆过点,设椭圆的上顶点为,右顶点和右焦点分别为,且(1)求椭圆的标准方程;(2)设直线交椭圆于,两点,设
5、直线与直线的斜率分别为,若,试判断直线是否过定点?若过定点,求出该定点的坐标;若不过定点,请说明理由20(12分)随着改革开放的不断深入,祖国不断富强,人民的生活水平逐步提高,为了进一步改善民生,2019年1月1日起我国实施了个人所得税的新政策,其政策的主要内容包括:(1)个税起征点为5000元;(2)每月应纳税所得额(含税)收入个税起征点专项附加扣除;(3)专项附加扣除包括赡养老人费用子女教育费用继续教育费用大病医疗费用等其中前两项的扣除标准为:赡养老人费用:每月扣除2000元子女教育费用:每个子女每月扣除1000元新个税政策的税率表部分内容如下:级数一级二级三级四级每月应纳税所得额(含税)
6、不超过3000元的部分超过3000元至12000元的部分超过12000元至25000元的部分超过25000元至35000元的部分税率3102025(1)现有李某月收入29600元,膝下有一名子女,需要赡养老人,除此之外,无其它专项附加扣除请问李某月应缴纳的个税金额为多少?(2)为研究月薪为20000元的群体的纳税情况,现收集了某城市500名的公司白领的相关资料,通过整理资料可知,有一个孩子的有400人,没有孩子的有100人,有一个孩子的人中有300人需要赡养老人,没有孩子的人中有50人需要赡养老人,并且他们均不符合其它专项附加扣除(受统计的500人中,任何两人均不在一个家庭)若他们的月收入均为
7、20000元,依据样本估计总体的思想,试估计在新个税政策下这类人群缴纳个税金额的分布列与期望21(12分)已知为等差数列,为等比数列,的前n项和为,满足,.(1)求数列和的通项公式;(2)令,数列的前n项和,求.22(10分)如图,在中,点在线段上.(1)若,求的长;(2)若,求的面积.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1B【解析】先求出双曲线的渐近线方程,可得则直线与直线的距离,根据圆与双曲线的右支没有公共点,可得,解得即可【详解】由题意,双曲线的一条渐近线方程为,即,是直线上任意一点,则直线与直线的距离,圆与双曲线
8、的右支没有公共点,则,即,又故的取值范围为,故选:B【点睛】本题主要考查了直线和双曲线的位置关系,以及两平行线间的距离公式,其中解答中根据圆与双曲线的右支没有公共点得出是解答的关键,着重考查了推理与运算能力,属于基础题2D【解析】由可判断选项A;当时,可判断选项B;利用整体换元法可判断选项C;可判断选项D.【详解】由题知,最小正周期,所以A正确;当时,所以B正确;当时,所以C正确;由的图象向左平移个单位,得,所以D错误.故选:D.【点睛】本题考查余弦型函数的性质,涉及到周期性、对称性、单调性以及图象变换后的解析式等知识,是一道中档题.3D【解析】因甲不参加生物竞赛,则安排甲参加另外3场比赛或甲
9、学生不参加任何比赛当甲参加另外3场比赛时,共有=72种选择方案;当甲学生不参加任何比赛时,共有=24种选择方案综上所述,所有参赛方案有72+24=96种故答案为:96点睛:本题以选择学生参加比赛为载体,考查了分类计数原理、排列数与组合数公式等知识,属于基础题4D【解析】直接利用全称命题的否定是特称命题写出结果即可.【详解】因为全称命题的否定是特称命题,所以,命题:,则为:,.故本题答案为D.【点睛】本题考查命题的否定,特称命题与全称命题的否定关系,是基础题.5A【解析】根据三视图,还原空间几何体,即可得该几何体的体积.【详解】由该几何体的三视图,还原空间几何体如下图所示:可知该几何体是底面在左
10、侧的四棱锥,其底面是边长为4的正方形,高为4,故.故选:A【点睛】本题考查了三视图的简单应用,由三视图还原空间几何体,棱锥体积的求法,属于基础题.6B【解析】利用特称命题的否定分析解答得解.【详解】已知命题,那么是.故选:【点睛】本题主要考查特称命题的否定,意在考查学生对该知识的理解掌握水平,属于基础题.7B【解析】计算出的值,推导出,再由,结合数列的周期性可求得数列的前项和.【详解】由题意可知,则对任意的,则,由,得,因此,.故选:B.【点睛】本题考查数列求和,考查了数列的新定义,推导出数列的周期性是解答的关键,考查推理能力与计算能力,属于中等题.8D【解析】说明函数是周期函数,由周期性把自
11、变量的值变小,再结合奇偶性计算函数值【详解】由知函数的周期为4,又是奇函数,又,故选:D【点睛】本题考查函数的奇偶性与周期性,掌握周期性与奇偶性的概念是解题基础9B【解析】由题意,框图的作用是求分段函数的值域,求解即得解.【详解】由题意可知,框图的作用是求分段函数的值域,当;当综上:.故选:B【点睛】本题考查了条件分支的程序框图,考查了学生逻辑推理,分类讨论,数学运算的能力,属于基础题.10B【解析】设,则,因为,所以若,则,所以,所以,不符合题意,所以,则,所以,所以,设,则,在中,易得,所以,解得(负值舍去),所以椭圆的离心率故选B11D【解析】先根据三视图还原几何体是一个四棱锥,根据三视
12、图的数据,计算各棱的长度.【详解】根据三视图可知,几何体是一个四棱锥,如图所示:由三视图知: , 所以,所以,所以该几何体的最长棱的长为故选:D【点睛】本题主要考查三视图的应用,还考查了空间想象和运算求解的能力,属于中档题.12D【解析】根据抛物线的定义求得,由此求得的长.【详解】过作,垂足为,设与轴的交点为.根据抛物线的定义可知.由于,所以,所以,所以,所以.故选:D【点睛】本小题主要考查抛物线的定义,考查数形结合的数学思想方法,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13【解析】为锐角,故.1456【解析】根据已知条件求等比数列的首项和公比,再代入等比数列的通项公式,即
13、可得到答案.【详解】,.故答案为:.【点睛】本题考查等比数列的通项公式和前项和公式,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.15【解析】将三棱锥补成长方体,设,设三棱锥的外接球半径为,求得的值,然后利用球体表面积公式可求得结果.【详解】将三棱锥补成长方体,设,设三棱锥的外接球半径为,则,由勾股定理可得,上述三个等式全部相加得,因此,三棱锥的外接球面积为.故答案为:.【点睛】本题考查三棱锥外接球表面积的计算,根据三棱锥对棱长相等将三棱锥补成长方体是解答的关键,考查推理能力,属于中等题.16【解析】试题分析:显然,又,当时,作出可行区域,因抛物线与直线及在第一象限内的交
14、点分别是(1,1)和,从而当时,作出可行区域,因抛物线与直线及在第一象限内的交点分别是(1,1)和,从而综上所述,的取值范围是考点:不等式、简单线性规划.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1);(2)或【解析】(1)由椭圆的定义可知,焦点三角形的周长为,从而求出.写出直线的方程,与椭圆方程联立,根据交点横坐标为,求出和,从而写出椭圆的方程;(2)设出P、Q两点坐标,由可知点为的重心,根据重心坐标公式可将点用P、Q两点坐标来表示.由点在圆O上,知点M的坐标满足圆O的方程,得式.为直线l与椭圆的两个交点,用韦达定理表示,将其代入方程,再利用求得的范围,最终求出实数
15、的取值范围.【详解】解:(1)由题意知.,直线的方程为直线与椭圆的另一个交点的横坐标为解得或(舍去),椭圆的方程为(2)设.点为的重心,点在圆上,由得 ,代入方程,得,即由得解得.或【点睛】本题考查了椭圆的焦点三角形的周长,标准方程的求解,直线与椭圆的位置关系,其中重心坐标公式、韦达定理的应用是关键.考查了学生的运算能力,属于较难的题.18(1)p=4;(2)OA【解析】试题分析:(1)联立直线的方程和抛物线的方程y=2x-2x2=2py,化简写出根与系数关系,由于直线y=p2平分M1FM2,所以kM1F+kM2F=0,代入点的坐标化简得4-(2+p2)x试题解析:(1)由y=2x-2x2=2
16、py设M1(x1,因为直线y=p2平分M所以y1-p所以4-(2+p2)x1+x(2)由(1)知抛物线方程为x2=8y,且x1+x设M3(x3,x328所以x2+x整理得:x2由B,M3,式两边同乘x2得:x即:16x由得:x2x3即:16(x2+所以OA考点:直线与圆锥曲线的位置关系.【方法点晴】本题考查直线与抛物线的位置关系.阅读题目后明显发现,所有的点都是由直线和抛物线相交或者直线与直线相交所得.故第一步先联立y=2x-2x2=2py,相当于得到M1,M2的坐标,但是设而不求.根据直线y=p219(1) (2)直线过定点,该定点的坐标为【解析】(1)因为椭圆过点,所以 ,设为坐标原点,因
17、为,所以,又,所以 ,将联立解得(负值舍去),所以椭圆的标准方程为 (2)由(1)可知,设,将代入,消去可得, 则, 所以, 所以,此时,所以,此时直线的方程为,即, 令,可得,所以直线过定点,该定点的坐标为20(1)李某月应缴纳的个税金额为元,(2)分布列详见解析,期望为1150元【解析】(1)分段计算个人所得税额;(2)随机变量X的所有可能的取值为990,1190,1390,1590,分别求出各值对应的概率,列出分布列,求期望即可【详解】解:(1)李某月应纳税所得额(含税)为:2960050001000200021600元不超过3000的部分税额为30003%90元超过3000元至1200
18、0元的部分税额为900010%900元,超过12000元至25000元的部分税额为960020%1920元所以李某月应缴纳的个税金额为9090019202910元,(2)有一个孩子需要赡养老人应纳税所得额(含税)为:2000050001000200012000元,月应缴纳的个税金额为:90900990元有一个孩子不需要赡养老人应纳税所得额(含税)为:200005000100014000元,月应缴纳的个税金额为:909004001390元;没有孩子需要赡养老人应纳税所得额(含税)为:200005000200013000元,月应缴纳的个税金额为:909002001190元;没有孩子不需要赡养老人应纳税所得额(含税)为:2000050001
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年长春职业技术学院单招职业适应性考试模拟试题及答案解析
- 2026年无锡工艺职业技术学院单招职业适应性测试模拟试题及答案解析
- 2026年河北科技学院单招职业适应性考试模拟试题及答案解析
- 医疗行业品牌建设与传播
- 儿科病患护理经验分享
- 2026年教师资格证(小学教育教学知识与能力)自测试题及答案
- 2026年教师资格证(生物教学能力)考试题及答案
- 南昌职教城教育投资发展有限公司2025年第七批公开招聘工作人员专题参考笔试题库及答案解析
- 2025山东春宇人力资源有限公司招聘医疗事业单位派遣制工作人员备考考试题库及答案解析
- 变电所操作规程
- 手机拍照入门教程
- 2025考务人员网上培训考试真题及答案
- 2025年包头轻工职业技术学院教师招聘考试试题及答案
- TCECS 273-2024 组合楼板技术规程
- 东北林业大学19-20高数A1期末考试
- 内蒙古内蒙古2025年电力招聘学习资料(生产营销类专业知识)考前复习题及答案
- 民警给幼儿园讲安全课件
- 2025年金融股指期货开户测试题库及答案
- 2025年NASM-CES-I国际运动康复专家考试备考试题及答案解析
- 《季氏将伐颛臾》
- 《中国全凭静脉麻醉临床实践指南(2024版)》解读
评论
0/150
提交评论