山东省莱阳市2022-2023学年数学九年级第一学期期末统考模拟试题含解析_第1页
山东省莱阳市2022-2023学年数学九年级第一学期期末统考模拟试题含解析_第2页
山东省莱阳市2022-2023学年数学九年级第一学期期末统考模拟试题含解析_第3页
山东省莱阳市2022-2023学年数学九年级第一学期期末统考模拟试题含解析_第4页
山东省莱阳市2022-2023学年数学九年级第一学期期末统考模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.如图,AC是⊙O的内接正四边形的一边,点B在弧AC上,且BC是⊙O的内接正六边形的一边.若AB是⊙O的内接正n边形的一边,则n的值为()A.6 B.8 C.10 D.122.一个菱形的边长是方程的一个根,其中一条对角线长为8,则该菱形的面积为()A.48 B.24 C.24或40 D.48或803.如图,正方形中,,以为圆心,长为半径画,点在上移动,连接,并将绕点逆时针旋转至,连接.在点移动的过程中,长度的最小值是()A. B. C. D.4.关于x的一元二次方程x2﹣2x﹣m=0有实根,则m的值可能是()A.﹣4 B.﹣3 C.﹣2 D.﹣15.能说明命题“如果两个角互补,那么这两个角一个是锐角,另一个是钝角”为假命题的两个角是()A.120°,60° B.95°,105° C.30°,60° D.90°,90°6.不透明的口袋内装有红球和白球和黄球共20个,这些球除颜色外其它都相同,将口袋内的球充分搅拌均匀,从中随机摸出一个球,记下颜色后放回,不断重复该摸球过程,共摸取2020次球,发现有505次摸到白球,则口袋中白球的个数是()A.5 B.10 C.15 D.207.以下事件为必然事件的是()A.掷一枚质地均匀的骰子,向上一面的点数小于6B.多边形的内角和是C.二次函数的图象不过原点D.半径为2的圆的周长是4π8.用配方法解方程时,配方后所得的方程为()A. B. C. D.9.二次函数y=a(x﹣m)2﹣n的图象如图,则一次函数y=mx+n的图象经过()A.第一、二、三象限 B.第一、二、四象限C.第二、三、四象限 D.第一、三、四象限10.抛物线y=﹣3(x﹣1)2+3的顶点坐标是()A.(﹣1,﹣3) B.(﹣1,3) C.(1,﹣3) D.(1,3)11.如图,二次函数()图象的顶点为,其图象与轴的交点,的横坐标分别为和1.下列结论:①;②;③;④当时,是等腰直角三角形.其中结论正确的个数是()A.4个 B.1个 C.2个 D.1个12.在如图所示的网格中,每个小正方形的边长均为1,的三个顶点都是网格线的交点.已知,,将绕着点顺时针旋转,则点对应点的坐标为()A. B. C. D.二、填空题(每题4分,共24分)13.10件外观相同的产品中有1件不合格,现从中任意抽取1件进行检测,抽到不合格产品的概率是______.14.如图,△ABC中,∠ACB=90°,∠BAC=20°,点O是AB的中点,将OB绕点O顺时针旋转α角时(0°<α<180°),得到OP,当△ACP为等腰三角形时,α的值为_____.15.如图,是一个立体图形的三种视图,则这个立体图形的体积为______.16.一艘轮船在小岛A的北偏东60°方向距小岛80海里的B处,沿正西方向航行3小时后到达小岛的北偏西45°的C处,则该船行驶的速度为____________海里/时.17.抛物线的顶点坐标是______________.18.布袋里有8个大小相同的乒乓球,其中2个为红色,1个为白色,5个为黄色,搅匀后从中随机摸出一个球是红色的概率是__________.三、解答题(共78分)19.(8分)已知:如图,反比例函数的图象与一次函数的图象交于点、点.(1)求一次函数和反比例函数的解析式;(2)求的面积;(3)直接写出一次函数值大于反比例函数值的自变量的取值范围.20.(8分)如图,在Rt△ABC中,∠C=90°,矩形DEFG的顶点G、F分别在边AC、BC上,D、E在边AB上.(1)求证:△ADG∽△FEB;(2)若AD=2GD,则△ADG面积与△BEF面积的比为.21.(8分)只有1和它本身两个因数且大于1的正整数叫做素数.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果,哥德巴赫猜想是:每个大于2的偶数都可以表示为两个素数的和,如16=3+1.(1)若从7,11,19,23中随机抽取1个素数,则抽到的素数是7的概率是_______;(2)若从7,11,19,23中随机抽取1个素数,再从余下的3个数字中随机抽取1个素数,用面树状图或列表的方法求抽到的两个素数之和大于等于30的概率,22.(10分)如图,在中,连接,点,分别是的点(点不与点重合),,相交于点.(1)求,的长;(2)求证:~;(3)当时,请直接写出的长.23.(10分)为了测量竖直旗杆的高度,某数学兴趣小组在地面上的点处竖直放了一根标杆,并在地面上放置一块平面镜,已知旗杆底端点、点、点在同一条直线上.该兴趣小组在标杆顶端点恰好通过平面镜观测到旗杆顶点,在点观测旗杆顶点的仰角为.观测点的俯角为,已知标杆的长度为米,问旗杆的高度为多少米?(结果保留根号)24.(10分)已知二次函数y=x2-2mx+m2+m-1(m为常数).(1)求证:不论m为何值,该二次函数的图像与x轴总有两个公共点;(2)将该二次函数的图像向下平移k(k>0)个单位长度,使得平移后的图像经过点(0,-2),则k的取值范围是.25.(12分)如图,为测量小岛A到公路BD的距离,先在点B处测得∠ABD=37°,再沿BD方向前进150m到达点C,测得∠ACD=45°,求小岛A到公路BD的距离.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)26.知识改变世界,科技改变生活,导航装备的不断更新极大方便了人们的出行.周末,小强一家到两处景区游玩,他们从家处出发,向正西行驶160到达处,测得处在处的北偏西15°方向上,出发时测得处在处的北偏西60°方向上(1)填空:度;(2)求处到处的距离即的长度(结果保留根号)

参考答案一、选择题(每题4分,共48分)1、D【分析】连接AO、BO、CO,根据中心角度数=360°÷边数n,分别计算出∠AOC、∠BOC的度数,根据角的和差则有∠AOB=30°,根据边数n=360°÷中心角度数即可求解.【详解】连接AO、BO、CO,∵AC是⊙O内接正四边形的一边,∴∠AOC=360°÷4=90°,∵BC是⊙O内接正六边形的一边,∴∠BOC=360°÷6=60°,∴∠AOB=∠AOC﹣∠BOC=90°﹣60°=30°,∴n=360°÷30°=12;故选:D.【点睛】本题考查正多边形和圆,解题的关键是根据正方形的性质、正六边形的性质求出中心角的度数.2、B【解析】利用因式分解法解方程得到x1=5,x2=3,利用菱形的对角线互相垂直平分和三角形三边的关系得到菱形的边长为5,利用勾股定理计算出菱形的另一条对角线为6,然后计算菱形的面积.【详解】解:,所以,,∵菱形一条对角线长为8,∴菱形的边长为5,∴菱形的另一条对角线为,∴菱形的面积.故选:B.【点睛】本题考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.也考查了三角形三边的关系.也考查了三角形三边的关系和菱形的性质.3、D【分析】通过画图发现,点的运动路线为以A为圆心、1为半径的圆,当在对角线CA上时,C最小,先证明△PBC≌△BA,则A=PC=1,再利用勾股定理求对角线CA的长,则得出C的长.【详解】如图,当在对角线CA上时,C最小,连接CP,

由旋转得:BP=B,∠PB=90°,

∴∠PBC+∠CB=90°,

∵四边形ABCD为正方形,

∴BC=BA,∠ABC=90°,

∴∠AB+∠CB=90°,

∴∠PBC=∠AB,在△PBC和△BA中,,

∴△PBC≌△BA,

∴A=PC=1,

在Rt△ABC中,AB=BC=4,由勾股定理得:,∴C=AC-A=,即C长度的最小值为,故选:D.【点睛】本题考查了正方形的性质、旋转的性质和最小值问题,寻找点的运动轨迹是本题的关键.4、D【分析】根据题意可得,≥0,即可得出答案.【详解】解:∵关于x的一元二次方程x2﹣2x﹣m=0有实根,∴△=(﹣2)2﹣4×1×(﹣m)≥0,解得:m≥﹣1.故选D.【点睛】本题考查的是一元二次方程的根的判别式,当时,有两个不等实根;当时,有两个相等实根;当时,没有实数根.5、D【分析】根据两个直角互补的定义即可判断.【详解】解:∵互补的两个角可以都是直角,∴能说明命题“如果两个角互补,那么这两个角一定是锐角,另一个是钝角”为假命题的两个角是90°,90°,故选:D.考点:本题考查的是两角互补的定义点评:解答本题的关键是熟练掌握两角互补的定义,即若两个角的和是180°,则这两个角互补.6、A【分析】估计利用频率估计概率可估计摸到白球的概率为0.25,然后根据概率公式计算这个口袋中白球的数量.【详解】设白球有x个,根据题意得:,解得:x=5,

即白球有5个,

故选A.【点睛】考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.7、D【分析】必然事件是指一定会发生的事件,概率为1,根据该性质判断即可.【详解】掷一枚质地均匀的骰子,每一面朝上的概率为,而小于6的情况有5种,因此概率为,不是必然事件,所以A选项错误;多边形内角和公式为,不是一个定值,而是随着多边形的边数n的变化而变化,所以B选项错误;二次函数解析式的一般形式为,而当c=1时,二次函数图象经过原点,因此不是必然事件,所以C选项错误;圆周长公式为,当r=2时,圆的周长为4π,所以D选项正确.故选D.【点睛】本题考查了必然事件的概念,关键是根据不同选项所包含的知识点的概念进行判断对错;必然事件发生的概率为1,随机事件发生的概率为1<P<1,不可能事件发生的概率为1.8、D【解析】根据配方的正确结果作出判断:.故选D.9、A【解析】由抛物线的顶点坐标在第四象限可得出m>0,n>0,再利用一次函数图象与系数的关系,即可得出一次函数y=mx+n的图象经过第一、二、三象限.【详解】解:观察函数图象,可知:m>0,n>0,∴一次函数y=mx+n的图象经过第一、二、三象限.故选A.【点睛】本题考查了二次函数的图象以及一次函数图象与系数的关系,牢记“k>0,b>0⇔y=kx+b的图象在一、二、三象限”是解题的关键.10、D【分析】直接根据顶点式的特点求顶点坐标.【详解】解:∵y=﹣3(x﹣1)2+3是抛物线的顶点式,∴顶点坐标为(1,3).故选:D.【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x−h)2+k中,对称轴为x=h,顶点坐标为(h,k).11、C【分析】①x=1=−,即b=−2a,即可求解;②当x=1时,y=a+b+c<0,即可求解;③分别判断出a,b,c的取值,即可求解;④时,函数的表达式为:y=(x+1)(x−1)=,则点A、B、D的坐标分别为:(−1,0)、(1,0)(1,−2),即可求解.【详解】其图象与x轴的交点A,B的横坐标分别为−1和1,则函数的对称轴为:x=1,①x=1=−,即b=−2a,故不符合题意;②当x=1时,y=a+b+c<0,符合题意;③由图可得开口向上,a>0,对称轴x=1,∴a,b异号,b<0,图像与y轴交于负半轴,c<0∴>0,不符合题意;④时,函数的表达式为:y=(x+1)(x−1)=,则点A、B、D的坐标分别为:(−1,0)、(1,0)(1,−2),AB2=(-1-1)2+02=16,AD2=(-1-1)2+(0-2)2=8,BD2=(1-1)2+(0-2)2=8,故△ABD是等腰直角三角形符合题意;故选:C.【点睛】本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.12、D【分析】由,,确定坐标原点的位置,再根据题意画出图形,即可得到答案.【详解】如图所示:∴点对应点的坐标为.故选:D.【点睛】本题主要考查平面坐标系中,图形的旋转变换和坐标,根据题意,画出图形,是解题的关键.二、填空题(每题4分,共24分)13、【解析】试题分析:P(抽到不合规产品)=.14、40°或70°或100°.【分析】根据旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.先连结AP,如图,由旋转的性质得OP=OB,则可判断点P、C在以AB为直径的圆上,利用圆周角定理得∠BAP=∠BOP=α,∠ACP=∠ABP=90°﹣α,∠APC=∠ABC=70°,然后分类讨论:当AP=AC时,∠APC=∠ACP,即90°﹣α=70°;当PA=PC时,∠PAC=∠ACP,即α+20°=90°﹣α,;当CP=CA时,∠CAP=∠CAP,即α+20°=70°,再分别解关于α的方程即可.【详解】连结AP,如图,∵点O是AB的中点,∴OA=OB,∵OB绕点O顺时针旋转α角时(0°<α<180°),得到OP,∴OP=OB,∴点P在以AB为直径的圆上,∴∠BAP=∠BOP=α,∠APC=∠ABC=70°,∵∠ACB=90°,∴点P、C在以AB为直径的圆上,∴∠ACP=∠ABP=90°﹣α,∠APC=∠ABC=70°,当AP=AC时,∠APC=∠ACP,即90°﹣α=70°,解得α=40°;当PA=PC时,∠PAC=∠ACP,即α+20°=90°﹣α,解得α=70°;当CP=CA时,∠CAP=∠CPA,即α+20°=70°,解得α=100°,综上所述,α的值为40°或70°或100°.故答案为40°或70°或100°.考点:旋转的性质.15、【分析】根据该立体图形的三视图可判断该立体图形为圆柱,且底面直径为8,高为8,根据圆柱的体积公式即可得答案.【详解】∵该立体图形的三视图为两个正方形和一个圆,∴该立体图形为圆柱,且底面直径为8,高为8,∴这个立体图形的体积为×42×8=128,故答案为:128【点睛】本题考查由三视图判断几何体;利用该几何体的三视图得到该几何体底面半径、高是解题的关键.16、【解析】设该船行驶的速度为x海里/时,由已知可得BC=3x,AQ⊥BC,∠BAQ=60°,∠CAQ=45°,AB=80海里,在直角三角形ABQ中求出AQ、BQ,再在直角三角形AQC中求出CQ,得出BC=40+40=3x,解方程即可.【详解】如图所示:该船行驶的速度为x海里/时,3小时后到达小岛的北偏西45°的C处,由题意得:AB=80海里,BC=3x海里,在直角三角形ABQ中,∠BAQ=60°,∴∠B=90°−60°=30°,∴AQ=AB=40,BQ=AQ=40,在直角三角形AQC中,∠CAQ=45°,∴CQ=AQ=40,∴BC=40+40=3x,解得:x=.即该船行驶的速度为海里/时;故答案为:.【点睛】本题考查的是解直角三角形,熟练掌握方向角是解题的关键.17、(0,-1)【分析】抛物线的解析式为:y=ax2+k,其顶点坐标是(0,k),可以确定抛物线的顶点坐标.【详解】抛物线的顶点坐标是(0,-1).18、【分析】直接根据概率公式求解.【详解】解:随机摸出一个球是红色的概率=.

故答案为:.【点睛】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.三、解答题(共78分)19、(1),y=x+3;(2)S△AOB=;(3)x>1,12,-4<a<0【分析】(1)把A的坐标代入反比例函数解析式求出A的坐标,把A的坐标代入一次函数解析式求出即可;

(2)求出直线AB与y轴的交点C的坐标,分别求出△ACO和△BOC的面积,然后相加即可;

(3)根据A、B的坐标结合图象即可得出答案.【详解】(1)把A点(1,4)分别代入反比例函数解析式,一次函数解析式y=kx+b,得,k=1×4,1+b=4,解得,k=4,b=3,所以反比例函数解析式是,一次函数解析式y=x+3,(2)如图当X=-4时,y=-1,∴B(-4,-1),当y=0时,x+3=0,x=-3,∴C(-3,0),∴S△AOB=S△AOC+S△BOC=故答案为(3)∵B(-4,-1),A(1,4),

∴根据图象可知:当x>1或-4<x<0时,一次函数值大于反比例函数值.【点睛】本题考查了一次函数和反比例函数的交点问题,用待定系数法求一次函数的解析式,三角形的面积,一次函数的图象等知识点,题目具有一定的代表性,是一道比较好的题目,用了数形结合思想.20、(1)证明见解析;(2)4.【分析】(1)易证∠AGD=∠B,根据∠ADG=∠BEF=90°,即可证明△ADG∽△FEB;(2)相似三角形的性质解答即可.【详解】(1)证明:∵∠C=90°,

∴∠A+∠B=90°,

∵四边形DEFG是矩形,

∴∠GDE=∠FED=90°,

∴∠GDA+∠FEB=90°,

∴∠A+∠AGD=90°,

∴∠B=∠AGD,

且∠GDA=∠FEB=90°,

∴△ADG∽△FEB.(2)解:∵△ADG∽△FEB,

∴,∵AD=2GD,∴,∴.【点睛】本题考查了相似三角形的判定与性质,求证△ADG∽△FEB是解题的关键.21、(1);(2)【分析】(1)直接根据概率公式计算可得;

(2)画树状图得出所有等可能结果,再从中找到符合条件的结果数,利用概率公式计算可得.【详解】解:(1)因为7,11,19,23共有4个数,其中素数7只有1个,

所以从7,11,19,23中随机抽取1个素数,则抽到的素数是7的概率是,

故答案为.(2)由题意画树状图如下:由树状图可知,共有12种等可能的结果,其中抽到的两个素数之和大于等于30的结果有8种,故所求概率【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.22、(1)AD=10,BD=10;(2)见解析;(3)AG=.【分析】(1)由可证明△ABC∽△DAC,通过相似比即可求出AD,BD的长;(2)由(1)可证明∠B=∠DAB,再根据已知条件证明∠AFC=∠BEF即可;(3)过点C作CH∥AB,交AD的延长线于点H,根据平行线的性质得到,计算出CH和AH的值,由已知条件得到≌,设AG=x,则AF=15-x,HG=18-x,再由平行线的性质得到,表达出即可解出x,即AG的值.【详解】解:(1)∵,∴,又∵∠ACB=∠DCA,∴△ABC∽△DAC,∴,即,解得:CD=8,AD=10,∴BD=BC-CD=18-8=10,∴AD=10,BD=10;(2)由(1)可知,AD=BD=10,∴∠B=∠DAB,∵∠AFE=∠B+∠BEF,∴∠AFC+∠CFE=∠B+∠BEF,∵,∴∠AFC=∠BEF,又∵∠B=∠DAB,∴~;(3)如图,过点C作CH∥AB,交AD的延长线于点H,∴,即,解得:CH=12,HD=8,∴AH=AD+HD=18,若,则≌;∴BF=AG,设AG=x,则AF=15-x,HG=18-x,∵CH∥AB,∴,即,解得:,(舍去)∴AG=.【点睛】本题考查了相似三角形的判定与性质以及平行线分线段成比例,解题的关键是熟悉相似三角形的判定,并灵活作出辅助线.23、【分析】作交于点,则,,易得,根据光的反射规律易得,可得△CDE和三角形ABE均为等腰直角三角形,设,则,,,在中有,代入求解即

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论