版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Ramberg-OsgoodrelationshipFromWikipedia,thefreeencyclopediaJumpto:navigation,searchTheRamberg-Osgoodequationwascreatedtodescribethenonlinearrelationshipbetweenstressandstrain—thatis,thestress-straincurve—inmaterialsneartheiryieldpoints.Itisespeciallyusefulformetalsthathardenwithplasticdeformation(seestrainhardening),showingasmoothelastic-plastictransition.Initsoriginalform,itsays£isstrain,gisstress,EisYoung'smodulusandKandnareconstantsthatdependonthematerialbeingconsidered.Thefirsttermontherightside,"'-,isequaltotheelasticpartofthestrain,whilethesecondterm, ,accountsfortheplasticpart,theparametersKandndescribingthehardeningbehaviorofthematerial.Introducingtheyieldstrengthofthematerial,aanddefininganewparameter,a,relatedtoKas'1=Kg/E)",itisconvenienttorewritethetermontheextremerightsideasfollows:Replacinginthefirstexpression,theRamberg-Osgoodequationcanbewrittenas
[edit]HardeningbehaviorandYieldoffsetInthelastformoftheRamberg-Osgoodmodel,thehardeningbehaviorofthematerialdependsonthematerialconstantsand.■?.Duetothepower-lawrelationshipbetweenstressandplasticstrain,theRamberg-Osgoodmodelimpliesthatplasticstrainispresentevenforverylowlevelsofstress.Nevertheless,forlowappliedstressesandforthecommonlyusedvaluesofthematerialconstantsaandn,theplasticstrainremainsnegligiblecomparedtotheelasticstrain.Ontheotherhand,forstresslevelshigherthanaplasticstrainbecomesprogressivelylargerthanelasticstrain.d— .ThevalueEcanbeseenasayieldoffsetasshowninfigure1.Thiscomesfromthefactthat1 1■-'ri",when门门...Accordingly(seeFigure1):elasticstrainatyield=plasticstrainatyield=plasticstrainatyield=W「=yieldoffsetCommonlyusedvaluesforare~5orgreater,althoughmoreprecisevaluesareusuallyobtainedbyfittingoftensile(orcompressive)experimentaldata.Valuesfonicanalsobefoundbymeansoffittingtoexperimentaldata,althoughforsomematerials,itcanbefixedinordertohavetheyieldoffsetequaltotheacceptedvalueofstrainof0.2%,whichmeans:□罕=0?002
Figure1:GenericrepresentationoftheStress-StraincurvebymeansoftheRamberg-Osgoodequation.Straincorrespondingtotheyieldpointisthesumoftheelasticandplasticcomponents.[edit]Sources仁Ramberg,W.,&Osgood,W.R.(1943).Descriptionofstress-straincurvesbythreeparameters.TechnicalNoteNo.,9NationalAdvisoryCommitteeForAeronautics,WashingtonDC,[1]11.2.13DeformationplasticityProducts:ABAQUS/StandardABAQUS/CAEReferences.“Materiallibrary:overview,”Section9.1.1.“Inelasticbehavior,”Section11.1.1•^DEFORMATIONPLASTICITYOverviewThedeformationtheoryRamberg-Osgoodplasticitymodel:isprimarilyintendedforuseindevelopingfullyplasticsolutionsforfracturemechanicsapplicationsinductilemetals;andcannotappearwithanyothermechanicalresponsematerialmodelssinceitcompletelydescribesthemechanicalresponseofthematerial.One-dimensionalmodelInonedimensionthemodeliswherecristhestress;isthestrain;EisYoung'smodulus(definedastheslopeofthestress-straincurveatzerostress);qisthe“yield”offset;istheyieldstress,inthesensethat,when-—,",I,「• ■';andisthehardeningexponentforthe“plastic”(nonlinear)term:,IThematerialbehaviordescribedbythismodelisnonlinearatallstresslevels,butforcommonlyusedvaluesofthehardeningexponent(.•. ormore)thenonlinearitybecomessignificantonlyatstressmagnitudesapproachingorexceeding.GeneralizationtomultiaxialstressstatesTheone-dimensionalmodelisgeneralizedtomultiaxialstressstatesusingHooke'slawforthelineartermandtheMisesstresspotentialandassociatedflowlawforthenonlinearterm:whereisthestraintensor,isthestresstensor,istheequivalenthydrostaticstress,istheMisesequivalentstress,isthestressdeviator,andisthePoissonsratio.Thelinearpartofthebehaviorcanbecompressibleorincompressible,dependingonthevalueofthePoisson'sratio,butthenonlinearpartofthebehaviorisincompressible(becausetheflowisnormaltotheMisesstresspotential).Themodelisdescribedindetailin“Deformationplasticity,”Section4.3.9oftheABAQUSTheoryManua..Youspecifytheparameters,•,一n,and「directly.Theycanbedefinedasatabularfunctionoftemperature.InputFileUsage: *DEFORMATIONPLASTICITYABAQUS/CAEUsage:Propertymodule:materialeditor:Mechanical—:,DeformationPlasticityTypicalapplicationsThedeformationplasticitymodelismostcommonlyappliedinstaticloadingwithsmall-displacementanalysis,wherethefullyplasticsolutionmustbedevelopedinapartofthemodel.Generally,theloadisrampedonuntilallpointsintheregionbeingmonitoredsatisfytheconditionthatthe“plasticstrain”dominatesand,hence,exhibitfullyplasticbehavior,whichisdefinedasorYoucanspecifythenameofaparticularelementsettobemonitoredinastaticanalysisstepforfullyplasticbehavior.Thestepwillendwhenthesolutionsatallconstitutivecalculationpointsintheelementsetarefullyplastic,whenthemaximumnumberofincrementsspecifiedforthestepisreached,orwhenthetimeperiodspecifiedforthestaticstepisexceeded,whichevercomesfirst.InputFileUsage: *STATIC,FULLYPLASTIC=ElsetNameABAQUS/CAEUsage:Stepmodule:CreateStep:General:Static,General:Other:Stopwhenregionregionisfullyplastic.ElementsDeformationplasticitycanbeusedwithanystress/displacementelementinABAQUS/Standard.Sinceitwillgenerallybeusedforcaseswhenthedeformationisdominatedbyplasticflow,theuseof“hybrid”(mixedformulation)orreduced-integrationelementsisrecommendedwitht
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 装修回收协议书
- 销售石材合同范本
- 预占用林地协议书
- 自我隔离协议书
- 药品购赠协议书
- 质量与环保协议书
- 2026福建三明市尤溪县总医院医学人才校园(福建中医药大学)专场公开招聘7人考试核心试题及答案解析
- 意向房源协议书
- 征收赔偿协议书
- 虾池合作协议书
- 2026成方金融信息技术服务有限公司校园招聘5人考试题库附答案
- 车辆租赁服务协议书
- 2025安徽安庆市公安机关招聘警务辅助人员418人备考笔试题库及答案解析
- 2024-2025学年北京朝阳区九年级初三(上)期末历史试卷(含答案)
- MOOC 国际商务-暨南大学 中国大学慕课答案
- 玻璃绝缘子生产工艺
- 《儒林外史》整本书阅读教学设计案例
- 《邮储业务介绍》课件
- 医疗器械临床评价报告模板
- 污染场地调查评价与修复
- 生物计算机课件
评论
0/150
提交评论