下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省运城市黄营中学高三数学理下学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知集合P={0,1,2},Q={y|y=3x},则P∩Q=(
) A.{0,1} B.{1,2} C.{0,1,2} D.?参考答案:B考点:交集及其运算.专题:集合.分析:根据集合的基本运算进行求解即可.解答: 解:Q={y|y=3x}={y|y>0},则P∩Q={1,2},故选:B点评:本题主要考查集合的基本运算,比较基础.2.下面四个命题(1)比大(2)两个复数互为共轭复数,当且仅当其和为实数(3)的充要条件为(4)如果让实数与对应,那么实数集与纯虚数集一一对应,其中正确的命题个数是(
)A.
B.
C.
D.参考答案:A
解析:(1)比大,实数与虚数不能比较大小;(2)两个复数互为共轭复数时其和为实数,但是两个复数的和为实数不一定是共轭复数;
(3)的充要条件为是错误的,因为没有表明是否是实数;(4)当时,没有纯虚数和它对应3.已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,若=4,则|QF|=()A. B.3 C. D.2参考答案:B【考点】K8:抛物线的简单性质.【分析】求得直线PF的方程,与y2=8x联立可得x=1,利用|QF|=d可求.【解答】解:设Q到l的距离为d,则|QF|=d,∵=4,∴|PQ|=3d,∴不妨设直线PF的斜率为﹣=﹣2,∵F(2,0),∴直线PF的方程为y=﹣2(x﹣2),与y2=8x联立可得x=1,∴|QF|=d=1+2=3,故选:B.4.如图,直三棱柱ABC-A1B1C1中,,则异面直线AB1和BC1所成角的余弦值为(
)A. B. C. D.参考答案:D【分析】利用三角形中位线性质平行移动至,在中利用余弦定理可求得,根据异面直线所成角的范围可知所求的余弦值为.【详解】连接交于点,取中点,连接
设三棱柱为直三棱柱
四边形为矩形为中点
且又,
异面直线和所成角的余弦值为故选:【点睛】本题考查异面直线所成角的求解,关键是能够通过平移将异面直线所成角转化为相交直线所成角的求解问题;易错点是忽略异面直线所成角的范围,造成所求余弦值符号错误.5.在面积为的内部任取一点,则的面积大于的概率为A.
B.
C.
D.参考答案:D6.设a=log32,b=ln2,,则()A.a<b<c
B.b<c<a
C.c<a<b
D.c<b<a参考答案:C略7.函数的图象如图所示,为了得到的图象,则只需将的图象(A)向右平移个长度单位
(B)向右平移个长度单位(C)向左平移个长度单位
(D)向左平移个长度单位参考答案:A略8.下列结论正确的是A.当x>0且x≠1时,lgx+≥2B.当x≥2时,x+的最小值为2C.当x>0时,+≥2
D.当0<x≤2时,x-无最大值参考答案:C选项A中不能保证lgx>0;选项B中最小值为2时x=1;选项D中的函数在(0,2]上单调递增,有最大值;只有选项C中的结论正确9.设函数f(x)=ex+sinx,g(x)=x﹣2,设P(x1,f(x1)),Q(x2,g(x2))(x1≥0,x2>0),若直线PQ∥x轴,则P,Q两点间最短距离为(
) A.2 B.3 C.4 D.5参考答案:B考点:导数在最大值、最小值问题中的应用;点到直线的距离公式.专题:导数的概念及应用.分析:求出导函数f′(x),根据题意可知f(x1)=g(x2),令h(x)=ex+sinx﹣x+2(x≥0),求出其导函数,进而求得h(x)的最小值即为P、Q两点间的最短距离.解答: 解:x≥0时,f'(x)=ex+cosx≥1+cosx≥0,∴函数y=f(x)在[0,+∞)上单调递增,∵f(x1)=g(x2),所以+sinx1=x2﹣2,∴P,Q两点间的距离等于|x2﹣x1|=||,设h(x)=ex+sinx﹣x+2(x≥0),则h'(x)=ex+cosx﹣1(x≥0),记l(x)=h'(x)=ex+cosx﹣1(x≥0),则l'(x)=ex﹣sinx≥1﹣sinx≥0,∴h'(x)≥h'(0)=1>0,∴h(x)在[0,+∞)上单调递增,所以h(x)≥h(0)=3,∴|x2﹣x1|≥3,即P,Q两点间的最短距离等于3.故选:B.点评:本题主要考查了利用函数的导数求出函数的单调性以及函数的极值问题,考查学生分析解决问题的能力,属于中档题.10.已知集合,则下列结论中正确的是(
)A.
B.
C.
D.
参考答案:C
【知识点】集合的运算;集合的关系A1解析:因为,又因为,故易知,故选C.【思路点拨】先求出集合B,再进行判断即可。二、填空题:本大题共7小题,每小题4分,共28分11.在锐角△ABC中,角A,B,C的对边分别为a,b,c,若b=2,B=2A,则c的取值范围是
.参考答案:(,)【考点】正弦定理.【专题】转化思想;综合法;解三角形.【分析】由条件求得即<A<,再根据正弦定理求得c==4cosA﹣,显然c在(,)上是减函数,由此求得c的范围.【解答】解:锐角△ABC中,∵B=2A<,∴A<.再根据C=π﹣3A<,可得A>,即<A<,再根据正弦定理可得===,求得c====4cosA﹣在(,)上是减函数,故c∈(,),故答案为:(,).【点评】本题主要考查三角形的内角和公式、正弦定理,函数的单调性的应用,属于中档题.12.设函数f(x)=x2﹣1,对任意x∈ B. D.(﹣∞,﹣]∪上有定义,若对象x1,x2∈,有f()≤,则称f(x)在上具有性质P.设f(x)在上具有性质P.现给出如下结论:①f(x)=2x2,在上具有性质P;②f(x2)在上具有性质P;③f(x)在上的图象是连续不断的;④若f(x)在x=2处取得最大值1,则f(x)=1,x∈;其中正确结论的序号是
.参考答案:①④【考点】命题的真假判断与应用.【专题】新定义;函数思想;定义法;简易逻辑.【分析】①根据定义,直接求出f(),,比较即可;②③可通过反例说明不成立;④中构造1=f(2)=f()≤(f(x)+f(4﹣x)),结合定义可得出f(x)只能为1才满足题意.【解答】解:①f(x)=2x2,x1,x2∈,∴f()=,=+,显然有f()≤,故在上具有性质P,故正确;②中,反例:f(x)=﹣x在上满足性质P,但f(x2)=﹣x2在上不满足性质P,故②错误;③中,反例:f(x)=,1≤x<3;f(x)=2,x=3在上满足性质P,但f(x)在上不是连续函数,故③不成立;④中f(x)在x=2处取得最大值1,∵1=f(2)=f()≤(f(x)+f(4﹣x)),∴f(x)+f(4﹣x)≥2,∵f(x)≤1,f(4﹣x)≤1,∴f(x)=1,x∈,故正确;故答案为①④.【点评】考查了新定义类型的抽象函数,应紧扣定义,可用反例法排除选项.13.=
.参考答案:略14.若正项递增等比数列满足,则的最小值为
.参考答案:15.曲线在点处的切线方程为____________.参考答案:16.若,则__________.参考答案:试题分析:用换得联立以上两式得所以考点:1、函数的解析式.17.能说明“若f(x)>f(0)对任意的x∈(0,2]都成立,则f(x)在[0,2]上是增函数”为假命题的一个函数是__________.参考答案:y=sinx(答案不唯一)分析:举的反例要否定增函数,可以取一个分段函数,使得f(x)>f(0)且(0,2]上是减函数.详解:令,则f(x)>f(0)对任意的x∈(0,2]都成立,但f(x)在[0,2]上不是增函数.又如,令f(x)=sinx,则f(0)=0,f(x)>f(0)对任意的x∈(0,2]都成立,但f(x)在[0,2]上不是增函数.
三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分海事救援船对一艘失事船进行定位:以失事船的当前位置为原点,以正北方向为轴正方向建立平面直角坐标系(以1海里为单位长度),则救援船恰好在失事船正南方向12海里处,如图,现假设:①失事船的移动路径可视为抛物线;②定位后救援船即刻沿直线匀速前往救援;③救援船出发小时后,失事船所在位置的横坐标为(1)当时,写出失事船所在位置的纵坐标,若此时两船恰好会合,求救援船速度的大小和方向(2)问救援船的时速至少是多少海里才能追上失事船?
参考答案:19.已知函数(Ⅰ)若为的极值点,求实数的值;(Ⅱ)若在上为增函数,求实数的取值范围;(Ⅲ)当时,方程有实根,求实数的最大值.参考答案:解:(I)………2分因为为的极值点,所以,即,解得
……4分(II)因为函数在上为增函数,所以在上恒成立
………6分?当时,在上恒成立,所以在上为增函数,故
符合题意
………7分
?当时,由函数的定义域可知,必须有对恒成立,故只能,所以在上恒成立
………8分令函数,其对称轴为,因为,所以,要使在上恒成立,只要即可,
………9分即,所以因为,所以.综上所述,a的取值范围为
………10分(Ⅲ)当时,方程可化为问题转化为在上有解,即求函数的值域
………11分因为函数,令函数,
………12分则,所以当时,,从而函数在上为增函数,当时,,从而函数在上为减函数,因此
………13分而,所以,因此当时,b取得最大值0.
………14分略20.(本题满分10分)已知:函数(1)求函数的最小正周期和图象的对称中心.(2)求函数在区间上的值域.参考答案:略21.(1)若不等式|2a+b|+|2a﹣b|≥|a|(|2+x|+|2﹣x|)对任意非零实数a和b恒成立,求实数x的取值范围.(2)设函数,若f(x)≥mlog4x对于任意x∈[4,16]恒成立,求实数m的取值范围.参考答案:【考点】对数函数的图像与性质;绝对值不等式的解法.【专题】数形结合;分类讨论;转化思想;数学模型法;函数的性质及应用.【分析】(1)由a≠0,由不等式|2a+b|+|2a﹣b|≥|a|(|2+x|+|2﹣x|)?|2+x|+|2﹣x|≤+,由于4≤+,即可得出.(2)由x∈[4,16],可得log4x∈[1,2],而f(x)≥mlog4x化为m≤=2﹣,再利用反比例函数的单调性即可得出.【解答】解:(1)∵a≠0,∴不等式|2a+b|+|2a﹣b|≥|a|(|2+x|+|2﹣x|)?|2+x|+|2﹣x|≤+,∵4≤+,∴||2+x|+|2﹣x|≤4,∴x∈[﹣2,2].∴实数x的取值范围是[﹣2,2].(2)∵x∈[4,16],∴log4x∈[1,2],∴f(x)≥mlog4x化为m≤=2﹣∈.∵f(x)≥mlog4x对于任意x∈[4,16]恒成立,∴.∴实数m的取值范围是.【点评】本题考查了含绝对值不等式的性质、对数函数的单调性、反比例函数的单调性、恒成立问题的等价转化方法,考查了推理能力与计算能力,属于中档题.22.如图几何体ADM-BCN中,是正方形,,,,,.(Ⅰ)求证:;(Ⅱ)求证:;(Ⅲ)求二面角的余弦值.参考答案:(Ⅰ)在正方形中,;又,;
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年母婴电商服务营销行业报告
- 物业行政人事部年底总结
- 跨学科研究:小学语文汉字教学与建筑美学教育的方法创新课题报告教学研究课题报告
- 案例10-软银投资阿里巴巴获利几千倍
- 春的介绍教学课件
- 外院银行第一章
- 小学英语教学互动策略创新:生成式人工智能在课堂中的应用研究教学研究课题报告
- 电梯工程经理年底总结
- 老年骨科手术麻醉评估
- 毛概题库及答案期末
- 广东农信2026年度校园招聘备考题库及答案详解一套
- 建设工程消防设计 施工 验收案例精解900问 2025版
- 2026年医务人员劳动合同
- 管带机(输送机)技术协议二
- 广东省深圳市罗湖区2024-2025学年三年级上学期期末英语试题
- 2023年广东省广州市英语中考试卷(含答案)
- 马克思主义与当代课后习题答案
- 施工升降机卸料平台(盘扣式)专项施工方案(品茗验算通过可套用)
- 安全员的述职报告
- 2025年内蒙古能源集团招聘(管理类)复习题库及答案
- 机器人行业薪酬调查
评论
0/150
提交评论