




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年高考数学模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数,,若成立,则的最小值为()A.0 B.4 C. D.2.如图是某地区2000年至2016年环境基础设施投资额(单位:亿元)的折线图.则下列结论中表述不正确的是()A.从2000年至2016年,该地区环境基础设施投资额逐年增加;B.2011年该地区环境基础设施的投资额比2000年至2004年的投资总额还多;C.2012年该地区基础设施的投资额比2004年的投资额翻了两番;D.为了预测该地区2019年的环境基础设施投资额,根据2010年至2016年的数据(时间变量t的值依次为)建立了投资额y与时间变量t的线性回归模型,根据该模型预测该地区2019的环境基础设施投资额为256.5亿元.3.公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”,利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值,这就是著名的“徽率”。如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出的值为()(参考数据:)A.48 B.36 C.24 D.124.下列说法正确的是()A.命题“,”的否定形式是“,”B.若平面,,,满足,则C.随机变量服从正态分布(),若,则D.设是实数,“”是“”的充分不必要条件5.中国古代数学名著《九章算术》中记载了公元前344年商鞅督造的一种标准量器——商鞅铜方升,其三视图如图所示(单位:寸),若取3,当该量器口密闭时其表面积为42.2(平方寸),则图中x的值为()A.3 B.3.4 C.3.8 D.46.设f(x)是定义在R上的偶函数,且在(0,+∞)单调递减,则()A. B.C. D.7.将函数的图像向右平移个单位长度,再将图像上各点的横坐标伸长到原来的6倍(纵坐标不变),得到函数的图像,若为奇函数,则的最小值为()A. B. C. D.8.某四棱锥的三视图如图所示,则该四棱锥的体积为()A. B. C. D.9.已知抛物线上一点的纵坐标为4,则点到抛物线焦点的距离为()A.2 B.3 C.4 D.510.如图,四面体中,面和面都是等腰直角三角形,,,且二面角的大小为,若四面体的顶点都在球上,则球的表面积为()A. B. C. D.11.等腰直角三角形BCD与等边三角形ABD中,,,现将沿BD折起,则当直线AD与平面BCD所成角为时,直线AC与平面ABD所成角的正弦值为()A. B. C. D.12.已知定义在上的偶函数,当时,,设,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若四棱锥的侧面内有一动点Q,已知Q到底面的距离与Q到点P的距离之比为正常数k,且动点Q的轨迹是抛物线,则当二面角平面角的大小为时,k的值为______.14.春节期间新型冠状病毒肺炎疫情在湖北爆发,为了打赢疫情防控阻击战,我省某医院选派2名医生,6名护士到湖北、两地参加疫情防控工作,每地一名医生,3名护士,其中甲乙两名护士不到同一地,共有__________种选派方法.15.已知实数,满足,则的最大值为______.16.在平面直角坐标系xOy中,若圆C1:x2+(y-1)2=r2(r>0)上存在点P,且点P关于直线x-y=0的对称点Q在圆C2:(x-2)2+(y-1)2=1上,则r的取值范围是________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆:的离心率为,直线:与以原点为圆心,以椭圆的短半轴长为半径的圆相切.为左顶点,过点的直线交椭圆于,两点,直线,分别交直线于,两点.(1)求椭圆的方程;(2)以线段为直径的圆是否过定点?若是,写出所有定点的坐标;若不是,请说明理由.18.(12分)在直角坐标系中,曲线的参数方程为(为参数,将曲线经过伸缩变换后得到曲线.在以原点为极点,轴正半轴为极轴的极坐标系中,直线的极坐标方程为.(1)说明曲线是哪一种曲线,并将曲线的方程化为极坐标方程;(2)已知点是曲线上的任意一点,又直线上有两点和,且,又点的极角为,点的极角为锐角.求:①点的极角;②面积的取值范围.19.(12分)如图,在中,角的对边分别为,且满足,线段的中点为.(Ⅰ)求角的大小;(Ⅱ)已知,求的大小.20.(12分)在平面直角坐标系中,直线的的参数方程为(其中为参数),以坐标原点为极点,轴的正半轴为极轴的极坐标系中,点的极坐标为,直线经过点.曲线的极坐标方程为.(1)求直线的普通方程与曲线的直角坐标方程;(2)过点作直线的垂线交曲线于两点(在轴上方),求的值.21.(12分)已知不等式对于任意的恒成立.(1)求实数m的取值范围;(2)若m的最大值为M,且正实数a,b,c满足.求证.22.(10分)在直角坐标系中,曲线的标准方程为.以原点为极点,轴的非负半轴为极轴建立极坐标系,直线的极坐标方程为.(1)求直线的直角坐标方程;(2)若点在曲线上,点在直线上,求的最小值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
令,进而求得,再转化为函数的最值问题即可求解.【详解】∵∴(),∴,令:,,在上增,且,所以在上减,在上增,所以,所以的最小值为0.故选:A【点睛】本题主要考查了导数在研究函数最值中的应用,考查了转化的数学思想,恰当的用一个未知数来表示和是本题的关键,属于中档题.2、D【解析】
根据图像所给的数据,对四个选项逐一进行分析排除,由此得到表述不正确的选项.【详解】对于选项,由图像可知,投资额逐年增加是正确的.对于选项,投资总额为亿元,小于年的亿元,故描述正确.年的投资额为亿,翻两翻得到,故描述正确.对于选项,令代入回归直线方程得亿元,故选项描述不正确.所以本题选D.【点睛】本小题主要考查图表分析能力,考查利用回归直线方程进行预测的方法,属于基础题.3、C【解析】
由开始,按照框图,依次求出s,进行判断。【详解】,故选C.【点睛】框图问题,依据框图结构,依次准确求出数值,进行判断,是解题关键。4、D【解析】
由特称命题的否定是全称命题可判断选项A;可能相交,可判断B选项;利用正态分布的性质可判断选项C;或,利用集合间的包含关系可判断选项D.【详解】命题“,”的否定形式是“,”,故A错误;,,则可能相交,故B错误;若,则,所以,故,所以C错误;由,得或,故“”是“”的充分不必要条件,D正确.故选:D.【点睛】本题考查命题的真假判断,涉及到特称命题的否定、面面相关的命题、正态分布、充分条件与必要条件等,是一道容易题.5、D【解析】
根据三视图即可求得几何体表面积,即可解得未知数.【详解】由图可知,该几何体是由一个长宽高分别为和一个底面半径为,高为的圆柱组合而成.该几何体的表面积为,解得,故选:D.【点睛】本题考查由三视图还原几何体,以及圆柱和长方体表面积的求解,属综合基础题.6、D【解析】
利用是偶函数化简,结合在区间上的单调性,比较出三者的大小关系.【详解】是偶函数,,而,因为在上递减,,即.故选:D【点睛】本小题主要考查利用函数的奇偶性和单调性比较大小,属于基础题.7、C【解析】
根据三角函数的变换规则表示出,根据是奇函数,可得的取值,再求其最小值.【详解】解:由题意知,将函数的图像向右平移个单位长度,得,再将图像上各点的横坐标伸长到原来的6倍(纵坐标不变),得到函数的图像,,因为是奇函数,所以,解得,因为,所以的最小值为.故选:【点睛】本题考查三角函数的变换以及三角函数的性质,属于基础题.8、B【解析】
由三视图知该四棱锥是底面为正方形,且一侧棱垂直于底面,由此求出四棱锥的体积.【详解】由三视图知该四棱锥是底面为正方形,且一侧棱垂直于底面,画出四棱锥的直观图,如图所示:则该四棱锥的体积为.故选:B.【点睛】本题考查了利用三视图求几何体体积的问题,是基础题.9、D【解析】试题分析:抛物线焦点在轴上,开口向上,所以焦点坐标为,准线方程为,因为点A的纵坐标为4,所以点A到抛物线准线的距离为,因为抛物线上的点到焦点的距离等于到准线的距离,所以点A与抛物线焦点的距离为5.考点:本小题主要考查应用抛物线定义和抛物线上点的性质抛物线上的点到焦点的距离,考查学生的运算求解能力.点评:抛物线上的点到焦点的距离等于到准线的距离,这条性质在解题时经常用到,可以简化运算.10、B【解析】
分别取、的中点、,连接、、,利用二面角的定义转化二面角的平面角为,然后分别过点作平面的垂线与过点作平面的垂线交于点,在中计算出,再利用勾股定理计算出,即可得出球的半径,最后利用球体的表面积公式可得出答案.【详解】如下图所示,分别取、的中点、,连接、、,由于是以为直角等腰直角三角形,为的中点,,,且、分别为、的中点,所以,,所以,,所以二面角的平面角为,,则,且,所以,,,是以为直角的等腰直角三角形,所以,的外心为点,同理可知,的外心为点,分别过点作平面的垂线与过点作平面的垂线交于点,则点在平面内,如下图所示,由图形可知,,在中,,,所以,,所以,球的半径为,因此,球的表面积为.故选:B.【点睛】本题考查球体的表面积,考查二面角的定义,解决本题的关键在于找出球心的位置,同时考查了计算能力,属于中等题.11、A【解析】
设E为BD中点,连接AE、CE,过A作于点O,连接DO,得到即为直线AD与平面BCD所成角的平面角,根据题中条件求得相应的量,分析得到即为直线AC与平面ABD所成角,进而求得其正弦值,得到结果.【详解】设E为BD中点,连接AE、CE,由题可知,,所以平面,过A作于点O,连接DO,则平面,所以即为直线AD与平面BCD所成角的平面角,所以,可得,在中可得,又,即点O与点C重合,此时有平面,过C作与点F,又,所以,所以平面,从而角即为直线AC与平面ABD所成角,,故选:A.【点睛】该题考查的是有关平面图形翻折问题,涉及到的知识点有线面角的正弦值的求解,在解题的过程中,注意空间角的平面角的定义,属于中档题目.12、B【解析】
根据偶函数性质,可判断关系;由时,,求得导函数,并构造函数,由进而判断函数在时的单调性,即可比较大小.【详解】为定义在上的偶函数,所以所以;当时,,则,令则,当时,,则在时单调递增,因为,所以,即,则在时单调递增,而,所以,综上可知,即,故选:B.【点睛】本题考查了偶函数的性质应用,由导函数性质判断函数单调性的应用,根据单调性比较大小,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
二面角平面角为,点Q到底面的距离为,点Q到定直线得距离为d,则.再由点Q到底面的距离与到点P的距离之比为正常数k,可得,由此可得,则由可求k值.【详解】解:如图,设二面角平面角为,点Q到底面的距离为,点Q到定直线的距离为d,则,即.∵点Q到底面的距离与到点P的距离之比为正常数k,∴,则,∵动点Q的轨迹是抛物线,∴,即则.∴二面角的平面角的余弦值为解得:().故答案为:.【点睛】本题考查了四棱锥的结构特征,由四棱锥的侧面与底面的夹角求参数值,属于中档题.14、24【解析】
先求出每地一名医生,3名护士的选派方法的种数,再减去甲乙两名护士到同一地的种数即可.【详解】解:每地一名医生,3名护士的选派方法的种数有,若甲乙两名护士到同一地的种数有,则甲乙两名护士不到同一地的种数有.故答案为:.【点睛】本题考查利用间接法求排列组合问题,正难则反,是基础题.15、【解析】
画出不等式组表示的平面区域,将目标函数理解为点与构成直线的斜率,数形结合即可求得.【详解】不等式组表示的平面区域如下所示:因为可以理解为点与构成直线的斜率,数形结合可知,当且仅当目标函数过点时,斜率取得最大值,故的最大值为.故答案为:.【点睛】本题考查目标函数为斜率型的规划问题,属基础题.16、【解析】
设圆C1上存在点P(x0,y0),则Q(y0,x0),分别满足两个圆的方程,列出方程组,转化成两个新圆有公共点求参数范围.【详解】设圆C1上存在点P(x0,y0)满足题意,点P关于直线x-y=0的对称点Q(y0,x0),则,故只需圆x2+(y-1)2=r2与圆(x-1)2+(y-2)2=1有交点即可,所以|r-1|≤≤r+1,解得.故答案为:【点睛】此题考查圆与圆的位置关系,其中涉及点关于直线对称点问题,两个圆有公共点的判定方式.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)是,定点坐标为或【解析】
(1)根据相切得到,根据离心率得到,得到椭圆方程.(2)设直线的方程为,点、的坐标分别为,,联立方程得到,,计算点的坐标为,点的坐标为,圆的方程可化为,得到答案.【详解】(1)根据题意:,因为,所以,所以椭圆的方程为.(2)设直线的方程为,点、的坐标分别为,,把直线的方程代入椭圆方程化简得到,所以,,所以,,因为直线的斜率,所以直线的方程,所以点的坐标为,同理,点的坐标为,故以为直径的圆的方程为,又因为,,所以圆的方程可化为,令,则有,所以定点坐标为或.【点睛】本题考查了椭圆方程,圆过定点问题,意在考查学生的计算能力和综合应用能力.18、(1)曲线为圆心在原点,半径为2的圆.的极坐标方程为(2)①②【解析】
(1)求得曲线伸缩变换后所得的参数方程,消参后求得的普通方程,判断出对应的曲线,并将的普通方程转化为极坐标方程.(2)①将的极角代入直线的极坐标方程,由此求得点的极径,判断出为等腰三角形,求得直线的普通方程,由此求得,进而求得,从而求得点的极角.②解法一:利用曲线的参数方程,求得曲线上的点到直线的距离的表达式,结合三角函数的知识求得的最小值和最大值,由此求得面积的取值范围.解法二:根据曲线表示的曲线,利用圆的几何性质求得圆上的点到直线的距离的最大值和最小值,进而求得面积的取值范围.【详解】(1)因为曲线的参数方程为(为参数),因为则曲线的参数方程所以的普通方程为.所以曲线为圆心在原点,半径为2的圆.所以的极坐标方程为,即.(2)①点的极角为,代入直线的极坐标方程得点极径为,且,所以为等腰三角形,又直线的普通方程为,又点的极角为锐角,所以,所以,所以点的极角为.②解法1:直线的普通方程为.曲线上的点到直线的距离.当,即()时,取到最小值为.当,即()时,取到最大值为.所以面积的最大值为;所以面积的最小值为;故面积的取值范围.解法2:直线的普通方程为.因为圆的半径为2,且圆心到直线的距离,因为,所以圆与直线相离.所以圆上的点到直线的距离最大值为,最小值为.所以面积的最大值为;所以面积的最小值为;故面积的取值范围.【点睛】本小题考查坐标变换,极径与极角;直线,圆的极坐标方程,圆的参数方程,直线的极坐标方程与普通方程,点到直线的距离等.考查数学运算能力,包括运算原理的理解与应用、运算方法的选择与优化、运算结果的检验与改进等.也兼考了数学抽象素养、逻辑推理、数学运算、直观想象等核心素养.19、(Ⅰ);(Ⅱ).【解析】
(Ⅰ)由正弦定理边化角,再结合转化即可求解;(Ⅱ)可设,由,再由余弦定理解得,对中,由余弦定理有,通过勾股定理逆定理可得,进而得解【详解】(Ⅰ)由正弦定理得.而.由以上两式得,即.由于,所以,又由于,得.(Ⅱ)设,在中,由正弦定理有.由余弦定理有,整理得,由于,所以.在中,由余弦定理有.所以,所以.【点睛】本题考查正弦定理和余弦定理的综合运用,属于中档题20、(1),;(2)【解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 西安地质调查中心实习合同3篇
- 灯箱维修合同10篇
- 瓶装气企业安全培训课件
- DB14T 1953-2025 地面无机磨石材料应用技术规范
- 安全文明出行培训会议课件
- 分洪工程总体方案(3篇)
- 房屋工程方案小学作业(3篇)
- 广西嘉禾盛德金太阳再生资源有限公司汽车零部件再制造件表面处理工艺项目环境影响报告表
- 猫咪家族课件
- 猎人海力课件
- 旋挖钻机地基承载力验算2017.7
- 建立隐患闭环管理制度
- T/CECS 10026-2019绿色建材评价建筑门窗及配件
- 2025-2030中国甘草酸铵行业市场现状供需分析及投资评估规划分析研究报告
- 银川文化园全民健身体育运动馆地块土壤污染状况调查报告
- 明厨亮灶协议书
- 新药研究与开发技术 课件3.新药的工艺与质量研究
- “厂中厂”安全生产管理协议书(未修改版)7篇
- 《智能制造技术》课件 第4章 智能设计
- 类风湿关节炎健康教育
- 2025年装维智企工程师(三级)复习模拟100题及答案
评论
0/150
提交评论