2022-2023学年山东省临沂市普通高校对口单招数学自考模拟考试(含答案)_第1页
2022-2023学年山东省临沂市普通高校对口单招数学自考模拟考试(含答案)_第2页
2022-2023学年山东省临沂市普通高校对口单招数学自考模拟考试(含答案)_第3页
2022-2023学年山东省临沂市普通高校对口单招数学自考模拟考试(含答案)_第4页
2022-2023学年山东省临沂市普通高校对口单招数学自考模拟考试(含答案)_第5页
已阅读5页,还剩26页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年山东省临沂市普通高校对口单招数学自考模拟考试(含答案)学校:________班级:________姓名:________考号:________

一、单选题(20题)1.函数y=sinx+cosx的最小值和最小正周期分别是()A.

B.-2,2π

C.

D.-2,π

2.A.B.C.D.

3.“x=-1”是“x2-1=0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件

4.现无放回地从1,2,3,4,5,6这6个数字中任意取两个,两个数均为偶数的概率是()A.1/5B.1/4C.1/3D.1/2

5.已知sin(5π/2+α)=1/5,那么cosα=()A.-2/5B.-1/5C.1/5D.2/5

6.若是两条不重合的直线表示平面,给出下列正确的个数()(1)(2)(3)(4)A.lB.2C.3D.4

7.为了得到函数y=sin1/3x的图象,只需把函数y=sinx图象上所有的点的()A.横坐标伸长到原来的3倍,纵坐标不变

B.横坐标缩小到原来的1/3倍,纵坐标不变

C.纵坐标伸长到原来的3倍,横坐标不变

D.纵坐标缩小到原来的1/3倍,横坐标不变

8.已知全集U=R,集合A={x|x>2},则CuA=()A.{x|x≤1}B.{x|x<1}C.{x|x<2}D.{x|x≤2}

9.己知向量a=(3,-2),b=(-1,1),则3a+2b

等于()A.(-7,4)B.(7,4)C.(-7,-4)D.(7,-4)

10.若sinα=-3cosα,则tanα=()A.-3B.3C.-1D.1

11.A.1B.-1C.2D.-2

12.已知互相垂直的平面α,β交于直线l若直线m,n满足m⊥a,n⊥β则()A.m//LB.m//nC.n⊥LD.m⊥n

13.A.B.C.D.

14.(X-2)6的展开式中X2的系数是D()A.96B.-240C.-96D.240

15.直线以互相平行的一个充分条件为()A.以都平行于同一个平面

B.与同一平面所成角相等

C.平行于所在平面

D.都垂直于同一平面

16.若a,b两直线异面垂直,b,c两直线也异面垂直,则a,c的位置关系()A.平行B.相交、异面C.平行、异面D.相交、平行、异面

17.A.0

B.C.1

D.-1

18.已知a=(1,2),则|a|=()A.1

B.2

C.3

D.

19.“没有公共点”是“两条直线异面”的()A.充分而不必要条件B.充分必要条件C.必要而不充分条件D.既不充分也不必要条件

20.若函数y=log2(x+a)的反函数的图像经过点P(-1,0),则a的值为()A.-2

B.2

C.

D.

二、填空题(10题)21.Ig2+lg5=_____.

22.已知_____.

23.在:Rt△ABC中,已知C=90°,c=,b=,则B=_____.

24.正方体ABCD-A1B1C1D1中AC与AC1所成角的正弦值为

25.

26.已知正实数a,b满足a+2b=4,则ab的最大值是____________.

27.椭圆x2/4+y2/3=1的短轴长为___.

28.

29.在△ABC中,C=60°,AB=,BC=,那么A=____.

30.若复数,则|z|=_________.

三、计算题(10题)31.近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为“厨余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四类,并分别垛置了相应的垃圾箱,为调查居民生活垃圾的正确分类投放情况,现随机抽取了该市四类垃圾箱总计100吨生活垃圾,数据统计如下(单位:吨):(1)试估计“可回收垃圾”投放正确的概率;(2)试估计生活垃圾投放错误的概率。

32.有四个数,前三个数成等差数列,公差为10,后三个数成等比数列,公比为3,求这四个数.

33.解不等式4<|1-3x|<7

34.设函数f(x)既是R上的减函数,也是R上的奇函数,且f(1)=2.(1)求f(-1)的值;(2)若f(t2-3t+1)>-2,求t的取值范围.

35.求焦点x轴上,实半轴长为4,且离心率为3/2的双曲线方程.

36.己知直线l与直线y=2x+5平行,且直线l过点(3,2).(1)求直线l的方程;(2)求直线l在y轴上的截距.

37.从含有2件次品的7件产品中,任取2件产品,求以下事件的概率.(1)恰有2件次品的概率P1;(2)恰有1件次品的概率P2

.

38.在等差数列{an}中,前n项和为Sn

,且S4

=-62,S6=-75,求等差数列{an}的通项公式an.

39.某小组有6名男生与4名女生,任选3个人去参观某展览,求(1)3个人都是男生的概率;(2)至少有两个男生的概率.

40.已知函数y=cos2x+3sin2x,x∈R求:(1)函数的值域;(2)函数的最小正周期。

四、简答题(10题)41.三个数a,b,c成等差数列,公差为3,又a,b+1,c+6成等比数列,求a,b,c。

42.等比数列{an}的前n项和Sn,已知S1,S3,S2成等差数列(1)求数列{an}的公比q(2)当a1-a3=3时,求Sn

43.已知cos=,,求cos的值.

44.点A是BCD所在平面外的一点,且AB=AC,BAC=BCD=90°,BDC=60°,平面ABC丄平面BCD。(1)求证平面ABD丄平面ACD;(2)求二面角A-BD-C的正切值。

45.如图,四棱锥P-ABCD中,PA丄底面ABCD,AB//CD,AD=CD=1,BAD=120°,PA=,ACB=90°。(1)求证:BC丄平面PAC。(2)求点B到平面PCD的距离。

46.已知是等差数列的前n项和,若,.求公差d.

47.已知等差数列{an},a2=9,a5=21(1)求{an}的通项公式;(2)令bn=2n求数列{bn}的前n项和Sn.

48.如图:在长方体从中,E,F分别为和AB和中点。(1)求证:AF//平面。(2)求与底面ABCD所成角的正切值。

49.化简

50.四棱锥S-ABCD中,底面ABOD为平行四边形,侧面SBC丄底面ABCD(1)证明:SA丄BC

五、解答题(10题)51.

52.如图,ABCD-A1B1C1D1为长方体.(1)求证:B1D1//平面BC1D;(2)若BC=CC1,,求直线BC1与平面ABCD所成角的大小.

53.已知f(x)=x3+3ax2+bx+a2(a>1)在x=—1时有极值0.(1)求常数a,b的值;(2)求f(x)的单调区间.

54.甲、乙两人进行投篮训练,己知甲投球命中的概率是1/2,乙投球命中的概率是3/5,且两人投球命中与否相互之间没有影响.(1)若两人各投球1次,求恰有1人命中的概率;(2)若两人各投球2次,求这4次投球中至少有1次命中的概率.

55.已知函数f(x)=log21+x/1-x.(1)求f(x)的定义域;(2)讨论f(x)的奇偶性;(3)用定义讨论f(x)的单调性.

56.

57.已知函数f(x)=2sin(x-π/3).(1)写出函数f(x)的周期;(2)将函数f(x)图象上所有的点向左平移π/3个单位,得到函数g(x)的图象,写出函数g(x)的表达式,并判断函数g(x)的奇偶性.

58.给定椭圆C:x2/a2+y2/b2(a>b>0),称圆C1:x2+y2=a2+b2为椭圆C的“伴随圆已知椭圆C的离心率为/2,且经过点(0,1).(1)求椭圆C的方程;(2)求直线l:x—y+3=0被椭圆C的伴随圆C1所截得的弦长.

59.在△ABC中,角A,B,C的对边分别为a,b,c,且bcosC=(3a-c)cosB.(1)求cosB的值;(2)

60.设函数f(x)=2x3+3ax2+3bx+8c在x=1及x=2时取得极值.(1)求a,b的值;(2)若对于任意的x∈[0,3],都有f(x)<c2成立,求c的取值范围.</c

六、单选题(0题)61.根据如图所示的框图,当输入z为6时,输出的y=()A.1B.2C.5D.10

参考答案

1.A三角函数的性质,周期和最值.因为y=,所以当x+π/4=2kπ-π/2k∈Z时,ymin=T=2π.

2.C

3.A命题的条件.若x=-1则x2=1,若x2=1则x=±1,

4.A

5.C同角三角函数的计算sin(5π/2+α)=sin(π/2+α)=cosα=-1/5.

6.B若两条不重合的直线表示平面,由直线和平面之间的关系可知(1)、(4)正确。

7.A三角函数图像的性质.y=sinx横坐标伸长到原来的3倍,纵坐标不变y=sin1/3x.

8.D补集的计算.由A={x|x>2},全集U=R,则CuA={x|x≤2}

9.D

10.A同角三角函数的变换.若cosα=0,则sinα=0,显然不成立,所以cosα≠0,所以sinα/cosα=tanα=-3.

11.A

12.C直线与平面垂直的判定.由已知,α∩β=L,所以L包含于β,又因为n⊥β,所以n⊥L.

13.C

14.D

15.D根据直线与平面垂直的性质定理,D正确。

16.Da,c与b均为异面垂直,c与a有可能相交、平行和异面,

17.D

18.D向量的模的计算.|a|=

19.C

20.D

21.1.对数的运算.lg2+lg5==lg(2×5)=lgl0=l.

22.-1,

23.45°,由题可知,因此B=45°。

24.

,由于CC1=1,AC1=,所以角AC1C的正弦值为。

25.√2

26.2基本不等式求最值.由题

27.2椭圆的定义.因为b2=3,所以b=短轴长2b=2

28.(3,-4)

29.45°.解三角形的正弦定理.由正弦定理知BC/sinA=AB/sinC,即/sinA=/sin60°所以sinA=/2,又由题知BC<AB,得A<C,所以A=45°.

30.

复数的模的计算.

31.

32.

33.

34.解:(1)因为f(x)=在R上是奇函数所以f(-x)=-f(x),f(-1)=-f(1)=-2(2)f(t2-3t+1)>-2=f(-1)因为f(x)=在R上是减函数,t2-3t+1<-1所以1<t<2

35.解:实半轴长为4∴a=4e=c/a=3/2,∴c=6∴a2=16,b2=c2-a2=20双曲线方程为

36.解:(1)设所求直线l的方程为:2x-y+c=0∵直线l过点(3,2)∴6-2+c=0即c=-4∴所求直线l的方程为:2x-y-4=0(2)∵当x=0时,y=-4∴直线l在y轴上的截距为-4

37.

38.解:设首项为a1、公差为d,依题意:4a1+6d=-62;6a1+15d=-75解得a1=-20,d=3,an=a1+(n-1)d=3n-23

39.

40.

41.由已知得:由上可解得

42.

43.

44.分析:本题考查面面垂直的证明,考查二面角的正切值的求法。(1)推导出CD⊥AB,AB⊥AC,由此能证明平面ABD⊥平面ACD。

(2)取BC中点O,以O为原点,过O作CD的平行线为x轴,OC为y轴,OA为z轴,建立空间直角坐标系,利用向量法能求出二面角A-BD-C的正切值。解答:证明:(Ⅰ)∵面ABC⊥底面BCD,∠BCD=90°,面ABC∩面BCD=BC,

∴CD⊥平面ABC,∴CD⊥AB,

∵∠BAC=90°,∴AB⊥AC,

∵AC∩CD=C,

∴平面ABD⊥平面ACD。解:(Ⅱ)取BC中点O,∵面ABC⊥底面BCD,∠BAC=90°,AB=AC,

∴AO⊥BC,∴AO⊥平面BDC,

以O为原点,过O作CD的平行线为x轴,OC为y轴,OA为z轴,建立空间直角坐标系,

45.证明:(1)PA⊥底面ABCDPA丄BC又∠ACB=90°,BC丄AC则BC丄平面PAC(2)设点B到平面PCD的距离为hAB//CDAB//平面PCD又∠BAD=120°∠ADC=60°又AD=CD=1则△ADC为等边三角形,且AC=1PA=

PD=PC=2

46.根据等差数列前n项和公式得解得:d=4

47.(1)∵a5=a2+3dd=4a2=a1+d∴an=a1+(n-1)d=5+4n-4=4n+1(2)

∴数列为首项b1=32,q=16的等比数列

48.

49.1+2cos2a-cos2=1+2cos2a-(cos2a-sin2a)=1+cos2a+sin2a=2

50.证明:作SO丄BC,垂足为O,连接AO∵侧面SB丄底面ABCD∴SO丄底面ABCD∵SA=SB∴0A=0B又∵ABC=45°∴AOB是等腰直角三角形则OA丄OB得SA丄BC

51.

52.(1)ABCD-A1B1C1D1为长方体,所以B1D1//BD,又BD包含于平面BC1D,B1D1不包含BC1D,所以B1D1//平面BC1D(2)因为ABCD-A1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论