下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年吉林省四平市普通高校对口单招数学自考预测试题(含答案)学校:________班级:________姓名:________考号:________
一、单选题(20题)1.若不等式|ax+2|<6的解集是{x|-1<x<2},则实数a等于()A.8B.2C.-4D.-8
2.A.负数B.正数C.非负数D.非正数
3.点A(a,5)到直线如4x-3y=3的距离不小于6时,则a的取值为()A.(-3,2)B.(-3,12)C.(-,-3][12,+)D.(-,-3)(12,+)
4.下列函数中,是增函数,又是奇函数的是(〕A.y=
B.y=1/x
C.y=x2
D.y=x1/3
5.若实数a,b满足a+b=2,则3a+3b的最小值是()A.18
B.6
C.
D.
6.下列四个命题:①垂直于同一条直线的两条直线相互平行;②垂直于同一个平面的两条直线相互平行;③垂直于同一条直线的两个平面相互平行;④垂直于同一个平面的两个平面相互平行.其中正确的命题有()A.1个B.2个C.3个D.4个
7.已知平面向量a=(1,3),b(-1,1),则ab=A.(0,4)B.(-1,3)C.0D.2
8.设集合,则MS等于()A.{x|x>}
B.{x|x≥}
C.{x|x<}
D.{x|x≤}
9.A.11B.99C.120D.121
10.等差数列中,a1=3,a100=36,则a3+a98=()A.42B.39C.38D.36
11.设集合{x|-3<2x-1<3},集合B为函数y=lg(x-1)的定义域,则A∩B=()A.(1,2)B.[1,2]C.[1,2)D.(1,2]
12.以点(2,0)为圆心,4为半径的圆的方程为()A.(x-2)2+y2=16
B.(x-2)2+y2=4
C.(x+2)2+y2=46
D.(x+2)2+y2=4
13.A.15,5,25B.15,15,15C.10,5,30D.15,10,20
14.己知向量a
=(2,1),b
=(-1,2),则a,b之间的位置关系为()A.平行B.不平行也不垂直C.垂直D.以上都不对
15.设x∈R,则“x>1”是“x3>1”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件
16.对于数列0,0,0,...,0,...,下列表述正确的是()A.是等比但不是等差数列B.既是等差又是等比数列C.既不是等差又不是等比数列D.是等差但不是等比数列
17.为了了解全校240名学生的身高情况,从中抽取240名学生进行测量,下列说法正确的是()A.总体是240B.个体是每-个学生C.样本是40名学生D.样本容量是40
18.从1,2,3,4这4个数中任取两个数,则取出的两数都是奇数的概率是()A.2/3B.1/2C.1/6D.1/3
19.已知集合A={x|x>2},B={x|1<x<3},则A∩B=()A.{x|x>2}B.{x|x>1}C.{x|2<x<3}D.{x|1<x<3}
20.A.一B.二C.三D.四
二、填空题(10题)21.已知函数f(x)=ax3的图象过点(-1,4),则a=_______.
22.某工厂生产A、B、C三种不同型号的产品,产品数量之比依次为2:3:4,现用分层抽样方法抽出一个容量为n的样本,样本中A种型号产品有6件,那么n=
。
23.
24.
25.
26.若lgx=-1,则x=______.
27.
28.
29.
30.若事件A与事件ā互为对立事件,且P(ā)=P(A),则P(ā)=
。
三、计算题(10题)31.(1)求函数f(x)的定义域;(2)判断函数f(x)的奇偶性,并说明理由。
32.某小组有6名男生与4名女生,任选3个人去参观某展览,求(1)3个人都是男生的概率;(2)至少有两个男生的概率.
33.己知{an}为等差数列,其前n项和为Sn,若a3=6,S3=12,求公差d.
34.在等差数列{an}中,前n项和为Sn
,且S4
=-62,S6=-75,求等差数列{an}的通项公式an.
35.已知函数f(x)的定义域为{x|x≠0},且满足.(1)求函数f(x)的解析式;(2)判断函数f(x)的奇偶性,并简单说明理由.
36.甲、乙两人进行投篮训练,己知甲投球命中的概率是1/2,乙投球命中的概率是3/5,且两人投球命中与否相互之间没有影响.(1)若两人各投球1次,求恰有1人命中的概率;(2)若两人各投球2次,求这4次投球中至少有1次命中的概率.
37.从含有2件次品的7件产品中,任取2件产品,求以下事件的概率.(1)恰有2件次品的概率P1;(2)恰有1件次品的概率P2
.
38.己知直线l与直线y=2x+5平行,且直线l过点(3,2).(1)求直线l的方程;(2)求直线l在y轴上的截距.
39.近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为“厨余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四类,并分别垛置了相应的垃圾箱,为调查居民生活垃圾的正确分类投放情况,现随机抽取了该市四类垃圾箱总计100吨生活垃圾,数据统计如下(单位:吨):(1)试估计“可回收垃圾”投放正确的概率;(2)试估计生活垃圾投放错误的概率。
40.解不等式4<|1-3x|<7
四、简答题(10题)41.已知函数,且.(1)求a的值;(2)求f(x)函数的定义域及值域.
42.已知平行四边形ABCD中,A(-1,0),B(-1,-4),C(3,-2),E是AD的中点,求。
43.己知边长为a的正方形ABCD,PA丄底面ABCD,PA=a,求证,PC丄BD
44.设拋物线y2=4x与直线y=2x+b相交A,B于两点,弦AB长,求b的值
45.已知函数:,求x的取值范围。
46.设函数是奇函数(a,b,c∈Z)且f(1)=2,f(2)<3.(1)求a,b,c的值;(2)当x<0时,判断f(x)的单调性并加以证明.
47.解关于x的不等式
48.等差数列的前n项和为Sn,已知a10=30,a20=50。(1)求通项公式an。(2)若Sn=242,求n。
49.求过点P(2,3)且被两条直线:3x+4y-7=0,:3x+4y+8=0所截得的线段长为的直线方程。
50.一条直线l被两条直线:4x+y+6=0,3x-5y-6=0截得的线段中点恰好是坐标原点,求直线l的方程.
五、解答题(10题)51.如图,AB是⊙O的直径,P是⊙O所在平面外一点,PA垂直于⊙O所在的平面,且PA=AB=10,设点C为⊙O上异于A,B的任意一点.(1)求证:BC⊥平面PAC;(2)若AC=6,求三棱锥C-PAB的体积.
52.如图,ABCD-A1B1C1D1为长方体.(1)求证:B1D1//平面BC1D;(2)若BC=CC1,,求直线BC1与平面ABCD所成角的大小.
53.已知a为实数,函数f(x)=(x2+l)(x+a).若f(-1)=0,求函数:y=f(x)在[-3/2,1]上的最大值和最小值。
54.
55.如图,在三棱锥A-BCD中,AB丄平面BCD,BC丄BD,BC=3,BD=4,直线AD与平面BCD所成的角为45°点E,F分别是AC,AD的中点.(1)求证:EF//平面BCD;(2)求三棱锥A-BCD的体积.
56.
57.
58.已知函数f(x)=log21+x/1-x.(1)求f(x)的定义域;(2)讨论f(x)的奇偶性;(3)用定义讨论f(x)的单调性.
59.已知公差不为零的等差数列{an}的前4项和为10,且a2,a3,a7成等比数列.(1)求通项公式an;(2)设bn=2an求数列{bn}的前n项和Sn.
60.如图,在正方体ABCD—A1B1C1D1中,E,F分别为棱AD,AB的中点.(1)求证:EF//平面CB1D1;(2)求证:平面CAA1C1丄平面CB1D1
六、单选题(0题)61.已知互为反函数,则k和b的值分别是()A.2,
B.2,
C.-2,
D.-2,
参考答案
1.C
2.C
3.C
4.D函数奇偶性和单调性的判断.奇函数只有B,D,而B不是增函数.
5.B不等式求最值.3a+3b≥2
6.B直线与平面垂直的性质,空间中直线与直线之间的位置关系.①垂直于同一条直线的两条直线相互平行,不正确,如正方体的一个顶角的三个边就不成立;②垂直于同一个平面的两条直线相互平行,根据线面垂直的性质定理可知正确;③垂直于同一条直线的两个平面相互平行,根据面面平行的判定定理可知正确;④垂直于同一个平面的两个平面相互平行,不正确,如正方体相邻的三个面就不成立.
7.D
8.A由于MS表示既属于集合M又属于集合的所有元素的集合,因此MS=。
9.C
10.B
11.D不等式的计算,集合的运算.由题知A=[-1,2],B=(1,+∞),∴A∩B=(1,2]
12.A圆的方程.当圆心坐标为(x0,y0)时,圆的-般方程为(x-x0)2+(y-y0)2=r2.
13.D
14.C
15.C充分条件,必要条件,充要条件的判断.由x>1知,x3>1;由x3>1可推出x>1.
16.D
17.D确定总体.总体是240名学生的身高情况,个体是每一个学生的身高,样本是40名学生的身髙,样本容量是40.
18.C古典概型.任意取到两个数的方法有6种:1,2;1,3;1,4;2,3;2,4;3,4;,满足题意的有1种:1,3;则要求的概率为1/6.
19.C集合的运算.由已知条件得,A∩B={x|x>2}∩{x|1<x<3}={x|2<x<3}
20.A
21.-2函数值的计算.由函数f(x)=ax3-2x过点(-1,4),得4=a(-1)3-2×(-1),解得a=-2.
22.72
23.-2i
24.
25.
26.1/10对数的运算.x=10-1=1/10
27.12
28.75
29.2
30.0.5由于两个事件是对立事件,因此两者的概率之和为1,又两个事件的概率相等,因此概率均为0.5.
31.
32.
33.
34.解:设首项为a1、公差为d,依题意:4a1+6d=-62;6a1+15d=-75解得a1=-20,d=3,an=a1+(n-1)d=3n-23
35.
36.
37.
38.解:(1)设所求直线l的方程为:2x-y+c=0∵直线l过点(3,2)∴6-2+c=0即c=-4∴所求直线l的方程为:2x-y-4=0(2)∵当x=0时,y=-4∴直线l在y轴上的截距为-4
39.
40.
41.(1)(2)
42.平行四边形ABCD,CD为AB平移所得,从B点开始平移,于是C平移了(4,2),所以,D(-1+4,0+2)=(3,2),E是AD中点,E[(-1+3)/2,(0+2)/2]=(1,1)向量EC=(3-1,-2-1)=(2,-3),向量ED=(3-1,2-1)=(2,1)向量EC×向量ED=2×2+(-3)×1=1。
43.证明:连接ACPA⊥平面ABCD,PC是斜线,BD⊥ACPC⊥BD(三垂线定理)
44.由已知得整理得(2x+m)2=4x即∴再根据两点间距离公式得
45.
X>4
46.
∴
∴得2c=0∴得c=0又∵由f(1)=2∴得又∵f(2)<3∴
∴得0<b<∵b∈Z∴b=1∴(2)设-1<<<0∵
∴
若时
故当X<-1时为增函数;当-1≤X<0为减函数
47.
48.
49.x-7y+19=0或7x+y-17=0
50.
51.(1)∵PA垂直于⊙O所在的平面,BC包含于⊙O所在的平面,∴PA⊥BC,又∵AB为⊙O的直径,C为⊙O上异于A、B的-点,AC⊥BC,且PA∩AC=A,∴BC⊥平面PAC.(2)由(1)知△ABC为直角三角形且∠ACB=90°,又AC=6,AB=10,∴又∵PA=10,PA⊥AC,∴S△PAC=1/2PA.AC=1/2×10×6=30.∴VC-PAB=1/3×SPAC×BC=1/3×30×8=80
52.(1)ABCD-A1B1C1D1为长方体,所以B1D1//BD,又BD包含于平面BC1D,B1D1不包含BC1D,所以B1D1//平面BC1D(2)因为ABCD-A1B1C1D1为长方体,CC1⊥平面ABCD,所以BC为BC1在平面ABCD内的射影,所以角C1BC为与ABCD夹角,在Rt△C1BC,BC=CC1所以角C1BC=45°,所以直线BC1与平面ABCD所成角的大小为45°.
53.
54.
55.
56.
57.
58.(1)要使函数f(x)=㏒21+x/1-x有意义,则须1+x/1-x>0解得-1<x<1,所以f(x)的定义域为{x|-1<x<1}.(2)因为f(x)的定义域为{x|-1<x<1},且f(-x)=㏒2(1+x/1-x)-1=-㏒21+x/1-x=-f(x)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年中共二大会址纪念馆招聘派遣制讲解员3名备考题库及一套参考答案详解
- 2026年嘉睿招聘(派遣至市第四人民医院)备考题库及完整答案详解1套
- 2026年中国棉花棉纱交易中心有限责任公司招聘备考题库及一套完整答案详解
- 2026年成都市新都现代交通产业功能区管理委员会公开招聘6名编外(聘用)人员的备考题库含答案详解
- 2026年厦门高新人才开发有限公司招聘中心血站医师类服务人员6人备考题库及参考答案详解一套
- 2026年厦门弘爱医院招聘备考题库参考答案详解
- 2026年宜宾市蜀南竹海旅游发展有限公司招聘7名工作人员备考题库及答案详解一套
- 2026年内蒙古苏尼特投资发展公司招聘9人备考题库及答案详解参考
- 2026年安溪六中招聘编外合同制教师备考题库及答案详解一套
- 2026年【招聘备考题库】玉带河幼儿园江湾分园招聘保安及答案详解1套
- 2025至2030杜氏肌营养不良症(DMD)疗法行业调研及市场前景预测评估报告
- 周围神经损伤的干细胞联合外泌体治疗策略
- 2025内蒙古能源集团智慧运维公司运维人员校园招聘55人笔试参考题库附带答案详解(3卷)
- 2025年苏州工业园区领军创业投资有限公司招聘备考题库及答案详解一套
- 2025年《医疗保障基金使用监督管理条例》试题及答案
- 四川省2025年高职单招职业技能综合测试(中职类)计算机类试卷(含答案解析)
- 2025至2030中国网球行业市场发展分析与发展趋势及投资风险报告
- 袜业生产质量管理工作规范
- DB-T29-317-2024 雪道施工技术规程
- 合同审查流程与审批标准化手册
- 16.2 整式的乘法(第3课时 多项式乘多项式)教学设计
评论
0/150
提交评论