2022-2023学年黑龙江省牡丹江市普通高校对口单招数学自考预测试题(含答案)_第1页
2022-2023学年黑龙江省牡丹江市普通高校对口单招数学自考预测试题(含答案)_第2页
2022-2023学年黑龙江省牡丹江市普通高校对口单招数学自考预测试题(含答案)_第3页
2022-2023学年黑龙江省牡丹江市普通高校对口单招数学自考预测试题(含答案)_第4页
2022-2023学年黑龙江省牡丹江市普通高校对口单招数学自考预测试题(含答案)_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年黑龙江省牡丹江市普通高校对口单招数学自考预测试题(含答案)学校:________班级:________姓名:________考号:________

一、单选题(10题)1.以点(2,0)为圆心,4为半径的圆的方程为()A.(x-2)2+y2=16

B.(x-2)2+y2=4

C.(x+2)2+y2=46

D.(x+2)2+y2=4

2.一个几何体的三视图如图所示,则该几何体可以是()A.棱柱B.棱台C.圆柱D.圆台

3.在2,0,1,5这组数据中,随机取出三个不同的数,则数字2是取出的三个不同数的中位数的概率为()A.3/4B.5/8C.1/2D.1/4

4.设A-B={x|x∈A且xB},若M={4,5,6,7,8},N={7,8,9,10}则M-N等于()A.{4,5,6,7,8,9,10}B.{7,8}C.{4,5,6,9,10}D.{4,5,6}

5.不等式组的解集是()A.{x|0<x<2}

B.{x|0<x<2.5}

C.{x|0<x<}

D.{x|0<x<3}

6.若输入-5,按图中所示程序框图运行后,输出的结果是()A.-5B.0C.-1D.1

7.在等差数列{an}中,a1=2,a3+a5=10,则a7=()A.5B.8C.10D.14

8.已知A(1,1),B(-1,5)且,则C的坐标为()A.(0,3)B.(2,-4)C.(1,-2)D.(0,6)

9.“没有公共点”是“两条直线异面”的()A.充分而不必要条件B.充分必要条件C.必要而不充分条件D.既不充分也不必要条件

10.执行如图所示的程序框图,输出n的值为()A.19B.20C.21D.22

二、填空题(10题)11.等差数列的前n项和_____.

12.若向量a=(2,-3)与向量b=(-2,m)共线,则m=

13.直线经过点(-1,3),其倾斜角为135°,则直线l的方程为_____.

14.

15.已知向量a=(1,-1),b(2,x).若A×b=1,则x=______.

16.在P(a,3)到直线4x-3y+1=0的距离是4,则a=_____.

17.抛物线y2=2x的焦点坐标是

18.若l与直线2x-3y+12=0的夹角45°,则l的斜线率为_____.

19.正方体ABCD-A1B1C1D1中AC与AC1所成角的正弦值为

20.若函数_____.

三、计算题(5题)21.已知函数f(x)的定义域为{x|x≠0},且满足.(1)求函数f(x)的解析式;(2)判断函数f(x)的奇偶性,并简单说明理由.

22.已知函数y=cos2x+3sin2x,x∈R求:(1)函数的值域;(2)函数的最小正周期。

23.设函数f(x)既是R上的减函数,也是R上的奇函数,且f(1)=2.(1)求f(-1)的值;(2)若f(t2-3t+1)>-2,求t的取值范围.

24.近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为“厨余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四类,并分别垛置了相应的垃圾箱,为调查居民生活垃圾的正确分类投放情况,现随机抽取了该市四类垃圾箱总计100吨生活垃圾,数据统计如下(单位:吨):(1)试估计“可回收垃圾”投放正确的概率;(2)试估计生活垃圾投放错误的概率。

25.有四个数,前三个数成等差数列,公差为10,后三个数成等比数列,公比为3,求这四个数.

四、简答题(10题)26.设等差数列的前n项数和为Sn,已知的通项公式及它的前n项和Tn.

27.已知a是第二象限内的角,简化

28.已知求tan(a-2b)的值

29.数列的前n项和Sn,且求(1)a2,a3,a4的值及数列的通项公式(2)a2+a4+a6++a2n的值

30.化简

31.如图,在直三棱柱中,已知(1)证明:AC丄BC;(2)求三棱锥的体积.

32.在ABC中,AC丄BC,ABC=45°,D是BC上的点且ADC=60°,BD=20,求AC的长

33.某商场经销某种商品,顾客可采用一次性付款或分期付款购买,根据以往资料统计,顾客采用一次性付款的概率是0.6,求3为顾客中至少有1为采用一次性付款的概率。

34.在1,2,3三个数字组成无重复数字的所有三位数中,随机抽取一个数,求:(1)此三位数是偶数的概率;(2)此三位数中奇数相邻的概率.

35.已知抛物线的焦点到准线L的距离为2。(1)求拋物线的方程及焦点下的坐标。(2)过点P(4,0)的直线交拋物线AB两点,求的值。

五、解答题(10题)36.已知递增等比数列{an}满足:a2+a3+a4=14,且a3+1是a2,a4的等差中项.(1)求数列{an}的通项公式;(2)若数列{an}的前n项和为Sn,求使Sn<63成立的正整数n的最大值.

37.2017年,某厂计划生产25吨至45吨的某种产品,已知生产该产品的总成本y(万元)与总产量x(吨)之间的关系可表示为y=x2/10-2x+90.(1)求该产品每吨的最低生产成本;(2)若该产品每吨的出厂价为6万元,求该厂2017年获得利润的最大值.

38.为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是().A.简单随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样

39.数列的前n项和Sn,且求(1)a2,a3,a4的值及数列的通项公式(2)a2+a4+a6++a2n的值

40.已知圆C的圆心在直线y=x上,半径为5且过点A(4,5),B(1,6)两点.(1)求圆C的方程;(2)过点M(-2,3)的直线l被圆C所截得的线段的长为8,求直线l的方程.

41.

42.在△ABC中,角A,B,C的对边分别为a,b,c,且bcosC=(3a-c)cosB.(1)求cosB的值;(2)

43.已知等比数列{an},a1=2,a4=16.(1)求数列{an}的通项公式;(2)求数列{nan}的前n项和{Sn}.

44.如图,在三棱锥A-BCD中,AB丄平面BCD,BC丄BD,BC=3,BD=4,直线AD与平面BCD所成的角为45°点E,F分别是AC,AD的中点.(1)求证:EF//平面BCD;(2)求三棱锥A-BCD的体积.

45.已知公差不为零的等差数列{an}的前4项和为10,且a2,a3,a7成等比数列.(1)求通项公式an;(2)设bn=2an求数列{bn}的前n项和Sn.

六、单选题(0题)46.椭圆的中心在原点,焦距为4,一条准线为x=-4,则该椭圆的方程为()A.x2/16+y2/12=1

B.x2/12+y2/8=1

C.x2/8+y2/4=1

D.x2/12+y2/4=1

参考答案

1.A圆的方程.当圆心坐标为(x0,y0)时,圆的-般方程为(x-x0)2+(y-y0)2=r2.

2.D空间几何体的三视图.从俯视图可看出该几何体上下底面为半径不等的圆,正视图与侧视图为等腰梯形,故此几何体为圆台.

3.C随机抽样的概率.分析题意可知,共有(0,1,2),(0,2,5),(1,2,5),(0,1,5)4种取法,符合题意的取法有2种,故所求概率P=1/2.故选C

4.D

5.C由不等式组可得,所以或,由①可得,求得;由②可得,求得,综上可得。

6.D程序框图的运算.因x=-5,不满足>0,所以在第一个判断框中

7.B等差数列的性质.由等差数列的性质得a1+a7=a3+a5,因为a1=2,a3+a5=10,所以a7=8,

8.A

9.C

10.B程序框图的运算.模拟执行如图所示的程序框图知,该程序的功能是计算S=1+2+...+n≥210时n的最小自然数值,由S=n(n+1)/2≥210,解得n≥20,∴输出n的值为20.

11.2n,

12.3由于两向量共线,所以2m-(-2)(-3)=0,得m=3.

13.x+y-2=0

14.

15.1平面向量的线性运算.由题得A×b=1×2+(-1)×x=2-x=1,x=1。

16.-3或7,

17.(1/2,0)抛物线y2=2px(p>0)的焦点坐标为F(P/2,0)。∵抛物线方程为y2=2x,

∴2p=2,得P/2=1/2

∵抛物线开口向右且以原点为顶点,

∴抛物线的焦点坐标是(1/2,0)。

18.5或,

19.

,由于CC1=1,AC1=,所以角AC1C的正弦值为。

20.1,

21.

22.

23.解:(1)因为f(x)=在R上是奇函数所以f(-x)=-f(x),f(-1)=-f(1)=-2(2)f(t2-3t+1)>-2=f(-1)因为f(x)=在R上是减函数,t2-3t+1<-1所以1<t<2

24.

25.

26.(1)∵

∴又∵等差数列∴∴(2)

27.

28.

29.

30.1+2cos2a-cos2=1+2cos2a-(cos2a-sin2a)=1+cos2a+sin2a=2

31.

32.在指数△ABC中,∠ABC=45°,AC=BC在直角△ADC中,∠ADC=60°,CD=ACCD=BC-BD,BD=20则,则

33.

34.1,2,3三个数字组成无重复数字的所有三位数共有(1)其中偶数有,故所求概率为(2)其中奇数相邻的三位数有个故所求概率为

35.(1)拋物线焦点F(,0),准线L:x=-,∴焦点到准线的距离p=2∴抛物线的方程为y2=4x,焦点为F(1,0)(2)直线AB与x轴不平行,故可设它的方程为x=my+4,得y2-4m-16=0由设A(x1,x2),B(y1,y2),则y1y2=-16∴

36.(1)设递增等比数列{an}的首项为a1,公比为q,依题意,有2(a3+1)=a2+a4,代入a2+a3+a4=14,得a3=4..由∵<a2+a4=10,由

37.(1)设每吨的成本为w万元,则w=y/x=x/10+90/(x-2)>2-2=4,当且仅当总产量x=30吨时,每吨的成本最低为4万元.(2)设利润为u万元,则w=6x-(x2/10-2x+90)=-x2/10+8x-90=-1/10(x-40)2+70,当总产量x=40吨时,利润最大为70万元.

38.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论