版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022年内蒙古自治区呼伦贝尔市普通高校对口单招数学自考预测试题(含答案)学校:________班级:________姓名:________考号:________
一、单选题(10题)1.设则f(f(-2))=()A.-1B.1/4C.1/2D.3/2
2.A.负数B.正数C.非负数D.非正数
3.若函数f(x)=x2+ax+3在(-∞,1]上单调递减,则实数a的取值范围是()A.(-∞,1]B.[―1,+∞)C.(―∞,-2]D.(-2,+∞)
4.把6本不同的书分给李明和张强两人,每人3本,不同分法的种类数为()A.
B.
C.
D.
5.若a0.6<a<a0.4,则a的取值范围为()</aA.a>1B.0<a<1C.a>0D.无法确定
6.若一个几何体的正视图和侧视图是两个全等的正方形,则这个几何体的俯视图不可能是()A.
B.
C.
D.
7.从1、2、3、4、5五个数字中任取1数,则抽中偶数的概率是()A.0B.1/5C.3/5D.2/5
8.下列函数中是奇函数的是A.y=x+3
B.y=x2+1
C.y=x3
D.y=x3+1
9.已知向量a=(1,3)与b=(x,9)共线,则实数x=()A.2B.-2C.-3D.3
10.A.第一象限角B.第二象限角C.第三象限角D.第四象限角
二、填空题(10题)11.有一长为16m的篱笆要围成一个矩形场地,则矩形场地的最大面积是________m2.
12.拋物线的焦点坐标是_____.
13.设A=(-2,3),b=(-4,2),则|a-b|=
。
14.
15.
16.
17.已知圆柱的底面半径为1,母线长与底面的直径相等,则该圆柱的表面积为_____.
18.
19.等差数列中,a1>0,S4=S9,Sn取最大值时,n=_____.
20.
三、计算题(5题)21.有四个数,前三个数成等差数列,公差为10,后三个数成等比数列,公比为3,求这四个数.
22.设函数f(x)既是R上的减函数,也是R上的奇函数,且f(1)=2.(1)求f(-1)的值;(2)若f(t2-3t+1)>-2,求t的取值范围.
23.有语文书3本,数学书4本,英语书5本,书都各不相同,要把这些书随机排在书架上.(1)求三种书各自都必须排在一起的排法有多少种?(2)求英语书不挨着排的概率P。
24.在等差数列{an}中,前n项和为Sn
,且S4
=-62,S6=-75,求等差数列{an}的通项公式an.
25.己知直线l与直线y=2x+5平行,且直线l过点(3,2).(1)求直线l的方程;(2)求直线l在y轴上的截距.
四、简答题(10题)26.计算
27.设拋物线y2=4x与直线y=2x+b相交A,B于两点,弦AB长,求b的值
28.已知函数.(1)求f(x)的定义域;(2)判断f(x)的奇偶性,并加以证明;(3)a>1时,判断函数的单调性并加以证明。
29.证明:函数是奇函数
30.化简a2sin(-1350°)+b2tan405°-(a-b)2cot765°-2abcos(-1080°)
31.某篮球运动员进行投篮测验,每次投中的概率是0.9,假设每次投篮之间没有影响(1)求该运动员投篮三次都投中的概率(2)求该运动员投篮三次至少一次投中的概率
32.一条直线l被两条直线:4x+y+6=0,3x-5y-6=0截得的线段中点恰好是坐标原点,求直线l的方程.
33.据调查,某类产品一个月被投诉的次数为0,1,2的概率分别是0.4,0.5,0.1,求该产品一个月内被投诉不超过1次的概率
34.如图,四棱锥P-ABCD中,PA丄底面ABCD,AB//CD,AD=CD=1,BAD=120°,PA=,ACB=90°。(1)求证:BC丄平面PAC。(2)求点B到平面PCD的距离。
35.已知函数:,求x的取值范围。
五、解答题(10题)36.如图,在四棱锥P-ABCD中,PC丄平面ABCD,AB//DC,DC丄AC.(1)求证:DC丄平面PAC;(2)求证:平面PAB丄平面PAC.
37.
38.求函数f(x)=x3-3x2-9x+5的单调区间,极值.
39.
40.
41.已知递增等比数列{an}满足:a2+a3+a4=14,且a3+1是a2,a4的等差中项.(1)求数列{an}的通项公式;(2)若数列{an}的前n项和为Sn,求使Sn<63成立的正整数n的最大值.
42.
43.
44.某化工厂生产的某种化工产品,当年产量在150吨至250吨之内,其年生产的总成本:y(万元)与年产量x(吨)之间的关系可近似地表示为y=x2/10-30x+400030x+4000.(1)当年产量为多少吨时,每吨的平均成本最低,并求每吨最低平均成本;(2)若每吨平均出厂价为16万元,求年生产多少吨时,可获得最大的年利润,并求最大年利润.
45.已知椭圆C的对称中心为原点O,焦点在x轴上,左右焦点分别为F1和F2,且|F1F2|=2,点(1,3/2)在该椭圆上.(1)求椭圆C的方程;(2)过F1的直线L与椭圆C相交于A,B两点,以F2为圆心为半径的圆与直线L相切,求△AF2B的面积.
六、单选题(0题)46.A.7B.8C.6D.5
参考答案
1.C函数的计算.f(-2)=2-2=1/4>0,则f(f(-2))=f(1/4)=1-=1-1/2=1/2
2.C
3.C二次函数图像的性质.根据二次函数图象的对称性有-a/2≥1,得a≤-2.
4.D
5.B已知函数是指数函数,当a在(0,1)范围内时函数单调递减,所以选B。
6.C几何体的三视图.由题意知,俯视图的长度和宽度相等,故C不可能.
7.D由于在5个数中只有两个偶数,因此抽中偶数的概率为2/5。
8.C
9.D
10.B
11.16.将实际问题求最值的问题转化为二次函数在某个区间上的最值问题.设矩形的长为xm,则宽为:16-2x/2=8-x(m)∴S矩形=x(8-x)=-x2+8x=-(x-4)2+16≤16.
12.
,因为p=1/4,所以焦点坐标为.
13.
。a-b=(2,1),所以|a-b|=
14.(3,-4)
15.
16.7
17.6π圆柱的侧面积计算公式.利用圆柱的侧面积公式求解,该圆柱的侧面积为27x1x2=4π,一个底面圆的面积是π,所以该圆柱的表面积为4π+27π=6π.
18.-5或3
19.6或7,由题可知,4a1+6d=9a1+36d,解得a1=-6d,所以Sn=-6dn+n(n+1)d/2=,又因为a1大于0,d小于0,所以当n=6或7时,Sn取最大值。
20.1-π/4
21.
22.解:(1)因为f(x)=在R上是奇函数所以f(-x)=-f(x),f(-1)=-f(1)=-2(2)f(t2-3t+1)>-2=f(-1)因为f(x)=在R上是减函数,t2-3t+1<-1所以1<t<2
23.
24.解:设首项为a1、公差为d,依题意:4a1+6d=-62;6a1+15d=-75解得a1=-20,d=3,an=a1+(n-1)d=3n-23
25.解:(1)设所求直线l的方程为:2x-y+c=0∵直线l过点(3,2)∴6-2+c=0即c=-4∴所求直线l的方程为:2x-y-4=0(2)∵当x=0时,y=-4∴直线l在y轴上的截距为-4
26.
27.由已知得整理得(2x+m)2=4x即∴再根据两点间距离公式得
28.(1)-1<x<1(2)奇函数(3)单调递增函数
29.证明:∵∴则,此函数为奇函数
30.原式=
31.(1)P=0.9×0.9×0.9=0.729(2)P=1-0.1×0.1×0.1=0.999
32.
33.设事件A表示“一个月内被投诉的次数为0”,事件B表示“一个月内被投诉的次数为1”∴P(A+B)=P(A)+P(B)=0.4+0.5=0.9
34.证明:(1)PA⊥底面ABCDPA丄BC又∠ACB=90°,BC丄AC则BC丄平面PAC(2)设点B到平面PCD的距离为hAB//CDAB//平面PCD又∠BAD=120°∠ADC=60°又AD=CD=1则△ADC为等边三角形,且AC=1PA=
PD=PC=2
35.
X>4
36.(1)∵PC丄平面ABCD,DC包含于平面ABCD,∴PC丄DC.又AC丄DC,PC∩AC=C,PC包含于平面PAC,AC包含于平面PAC,∴CD丄平面PAC.(2)证明∵AB//CD,CD丄平面PAC,∴AB丄平面PAC,AB包含于平面PAB,∴平面PAB丄平面PAC.
37.
38.f(x)=x3-6x-9=3(x+1)(x-3)令f(x)>0,∴x>3或x,-1.令f(x)<0时,-1<x<3.∴f(x)单调增区间为(-∞,-1],[3,+∞),单调减区间为[-1,3].f(x)极大值为f(-1)=l0,f(x)极小值为f(3)=-22.
39.
40.
41.(1)设递增等比数列{an}的首项为a1,公比为q,依题意,有2(a3+1)=a2+a4,代入a2+a3+a4=14,得a3=4..由∵<a2+a4=10,由
42.
43.
44.(1)设每吨的平均成本为W(万元/吨),ω=y/x=x/10+4000/x-30≥-30=10,当且仅当x/10=4000/x,x=200吨时每吨成本最低为10万元.(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年中职(软件与信息服务)软件需求分析阶段测试试题及答案
- 2025年中职会计学(会计教育心理学)试题及答案
- 2025年中职(动物繁殖技术)畜禽人工授精实操阶段测试题及答案
- 2025年大学智能设备运行与维护(智能系统调试)试题及答案
- 2025年大学美术(美术批评)试题及答案
- 2025年高职(应用化工技术)应用化工进阶阶段测试试题及答案
- 2025年中职网络技术(网络设备进阶调试)试题及答案
- 2025年高职第四学年(工程造价咨询)咨询实务阶段测试题及答案
- 2025年中职民俗学(民俗学概论)试题及答案
- 2025年高职铁道运输(铁路客运调度)试题及答案
- 鹤壁供热管理办法
- 01 华为采购管理架构(20P)
- 糖尿病逆转与综合管理案例分享
- 工行信息安全管理办法
- 娱乐场所安全管理规定与措施
- 化学●广西卷丨2024年广西普通高中学业水平选择性考试高考化学真题试卷及答案
- 人卫基础护理学第七版试题及答案
- 烟草物流寄递管理制度
- 被打和解协议书范本
- 《糖尿病合并高血压患者管理指南(2025版)》解读
- 养老院敬老院流动资产管理制度
评论
0/150
提交评论