课件上半学期eng sgwhk_第1页
课件上半学期eng sgwhk_第2页
课件上半学期eng sgwhk_第3页
课件上半学期eng sgwhk_第4页
课件上半学期eng sgwhk_第5页
已阅读5页,还剩48页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Heatcapacity(热容)TheC(T)

δ δ

Dimension:{J.K-TT0T Isochoricmolarheatca 等容摩尔热容 (T)defCV(T)1δV

n nVolarheatcapacity(等压摩尔热容p (T) Cp(T)1δQpp

1Hp

nT EmpiricexpressionofEmpiricexpressionofmolarheatcapacityIsobaricprocess,finitevariationofT2 dT T2−Qp 1

Cp,misnCp,m(T)dT isfunctionof1 1Cp,m=a+bT+cT2+dT Cp,m=a′+b′T+c′Ta,b,c,c′,dareconstantforgivensubstances,andcanbefoundin Atp,theheatcapacityof2 tiesUwith]

=

=

]

=

-p]p

[U]=

[]-

=(C-C)]p- =-(C-C)

-[

T T tiesHwith]

=

=

=C+V

[H = []+

=V-(C-C) p p =

+(Cp-

T T

Theapplicationofthe1st energy)issolelyfunctionoftemperatureThosegasesthatobeystrictlythefollowingtworulesarecalledperfectgases

Joule1°pV=nRT(Puresubstance) pVniRTi2°U=U

orU

andcomosition5-5th2.7Joule-Thomsoneffect焦耳-汤姆逊效应Theapplicationofthe1stlawinthrottlingflowprocessofarealgas6Frompreviousclass,wehavetheformulaheatcapacityC-Frompreviousclass,wehavetheformulaheatcapacity

Cp-CV={V-T}Thekeypointisto

U

HV V 7From T UU T U T

T

U

TVT

Joule

8FromHp T T H

H T Hp p T

JTCp ( (——

H J-J-H(IsothermalJoule-Thomsoncoefficient,Atkin’s9Joule(AiexpandstoNotsensitive、not1、Theheatcapacityofwaterinthecalorimetervesselismuch hanthatofthegas;2、ItdoesexistJoule-Thomsonexperiment(焦耳 实验绝热 多孔开 p2p2Throttlingflowprocess(节流过程p1Joule-Thomsoneffect(1852),theT,Vhavebeenchangedafterthethrottlingflow

ofetlingBecauseallchangestothegasoccuradiabatically:Q=0.Thegasontheleftiscompressedisothermallyandtheworkdone:WL=-pi(0-Vi)=piViTheworkdoneinWR=-pf(Vf-0)=-ThetotalworkThethermodynamicbasisofJoule-ThomsonW=WL+WR=piViThethermodynamicbasisofJoule-ThomsonThethermodynamicsofthethrottlingflowThethermodynamicJoule-SinceQ=0,thenU=W+Q=W.thechangeofUofthegasasitmovesfromonesideThethermodynamicJoule-Uf-Ui=W=piVi-pfVfUf+pfVf=Ui+piViHf=Theexpansionoccurswithoutchangeofenthalpyanisenthalpicprocess(等H1 isenthalpicprocess(等焓过程TheT,phavebeenbothchanged,whiletheHremainsconstant.ThisindicatesthatthechangeofHwithTH1 isenthalpicprocess(等焓过程p.ItisobviousthattheHofarealgasisfunctionofT,p,andisnotonlyafunctionofT.3Joule-Thomsoncoefficient焦-汤系数

T

T

standsforthechangeratiooftemperaturewithpressureatconstantenthalpyinathrottlingflowprocessSinceSincep<0(expansion),thetemperatureoffluidthrottlingflowwillrise(T>0)whenJ-Tdrop(T<0)J-invariable(T=0)J-(4)(4)Determinationofisenthalps(等焓线的测定得低压气体的一系列T2与(T1,p1)1(p2a,T2a)1p2b,T2b)1与(T1,p1)2相对应得THighestinversiontemperature最高转换温度(T,pTHighestinversiontemperature最高转换温度(T,p 1致冷区inversioncurve转换曲线致温区p >Coolingzone致冷 >J- <Heatingzone致温 <J-TheJoule-Thomsoneffect:forrealThesignoftheJoule-Gasesthatshowaheatingeffect(J-T<0)atoneTshowacoolingeffect(J-T>0)whentheTisbelowtheirupperinversiontemperature,TI.AgastypicallyhastwoThesignoftheJoule-The‘Linderefrigerator’makesuseofJoule-Thomsonexpansiontoliquefygases.(Industrialprocessofliquefyinggas)(5)ThermodynamicsofJoule-ThomsoneffectHighestinversionTm/气Tm/H TV Itcanbe

T

JTheJ-TcanbethencalcudataofCp.

Cp Cp qua From

Hp TpT H

T H H HT

p

pC C

J

H Fromthe2ndlaw

H

TV

p T

J

TV C

FromFromH=U+pV,wecanobtainHpVp UV(pV)TJ

UUVVp (pV)T TCp Cp IfwehavethevalueofU,wecanthen

Besides,fromU=U(V,T)andH=H(p,T),weobtainUVTVTU

UV

J T U CV (pV)JCpHpJCpHp TpT HTHHpJT

U H

J JT.Cp

sinceCV0, J=also,sinceCP0,soJ-T=TpThatis,theperfectgashasnotJoule-Thomsoncoefficient,TpTheJoule-ThomsoneffectsofgascanbediscussedTheJoule-Thomsoneffectsofgascanbediscussedusingequationofstateofreagas.Forexampl, satisfiesthevanderWaalsequation,wehave 2a(Vm–b)2–TheJ- C RTVm–

bTl=——(1–——b Inversion(

—+—2a—+1)–—a—=HU(因为Qp

QpQVn(RT QVQpn(RT所以|QV|ClassDiscussion1.Zn和稀硫酸作用,(1)在敞口瓶,(2)在ClassDiscussion1.Zn和稀硫酸作用,(1)在敞口瓶,(2)在 Zn(s)H2SO4ZnSO4H2(g)此时H=Qp,但Qp0HDiscussionDiscussion3EstimatewhetherQ,W,UandHarezeroornotinthelistedprocesses?Ifnot,pleasejudgewhethertheyarepositiveornegative?QW1.理想气体恒温可逆膨2理想气体节流膨3.理想气体绝热、反抗恒外压4.1mol实际气体5.在绝热容器中,1molH2(g)和1molCl2(g)生成2molHCl(g均为理想气体),fHm[HCl(g)]=-92.31kJ.mol-12.82.8Applicationofthe1stlawofinchemicalreactions(Thermochemistry,热化学IEquationofchemical.Chemicalreactions化学反应):分子内部原子结合方式及运动形态发生改变的过程(102KJ.mol-1)。分子集方式发生改变的过程(10KJ.mol-1),分子的种类和数Nuclearreaction(核反应):原子核 aA+0=B 0=AA+BB+GG+ formulaofBStoichiometricnumber化学计量数)of“–”reactant;“+”productIITheextentofreaction化学反应进度t=

aA+bB=gG+nA°nB°nG°t= Fromtheaboveequation,wenA– nB–nB°nG– nH–———=———=———=— nB–

B nB=

(B=A,B,G,Forclosed

dnB=

SincenB°is d=dnB/ nn

NH 2

H H

10nNH

NH

N2N

H H

20 1 3Thesignificances° doesnotdependonindividualsubstanceinvolvedinthereaction.Thechangeofeachsubstancecanbeevaluatedby describestheentirechemical°2°=0signifiesthatthereactiondoesnot=1molindicatesthatthechangeofsubstancesequalsexactlytheirstoichiometricIII.III.Statedescriptionofchemical(化学反应体系的状态描述Systemo ureForchemicalreactionaA+bB=gG+hH, thedeterminestherelationshipofdifferent tyundertheconsiderationofthereactionasaclosedsystem.Asaconsequence,thethermodynamicstatecanbedescribedbyT,p,.Ifthereactionreachesequilibrium,itneedsonlySystemcontainingRindependentThethermodynamicstatecanbedescribedbyequilibrium,itneedsonlytwoparametersT,p. tiesofreactionsystems(化学反应体系的摩尔微分热力Molarenthalpyofreactionofpurereactantstopureproducts 0= BB= AA+ BB+GG+ AtstateofT,P,,thechangeofenthalpyofthechemicalreactionsystemwillbe )=nBH*m(B,T,p)=(nB+B)H*m(B,T,p)isthemolarenthalpyofpuresubstancesatT,p.AtstateT,P,+d,theenthalpyofthechemicalreactionsystemisH(T,p,+d)=[nB+B(+d)]Whenitproceedsfrom +d,thechangeofenthalpyofthechemicalreactionsystemisdH= +d)– )= BThisisatconstantT,ptheformulaofenthalpychangeofthechemicalreactionsystem,itisgenerallywrittenasrHm]T,p=BH*

(J.mol-rHmisthemolarenthalpyofchemicalreactionsystem.Itisanintensive tyofchemicalreactionsystem,andastatefunction.rHmdeendsonthe towritetheeuation应时的H=-1200J,对不同反应式计算积分摩尔焓变H/反应式1CO2aq

2MnO(aq)

H(aq) 2CO2(aq)

2Mn2(aq)5

85H反应式:52O4反应式:52O4 (aq)O4(aq)16H )→10CO(aq)2Mn2(aq)8H22

n(CO2)-0.162510-

- n(MO)-0.082010-3 n(CO2

2 n(MO (M

2 5

H n(CO2

300KJ.mol-

(CO2

H

1500KJ.mol-MolarenthalpyofreactionofmixturerHm]T,p=B

(J.mol-Itissimilartotheformulaofmolardifferentialenthalpychangeofpuresubstancereactants,butHm(B,T,pisthepartialmolarenthalpy(偏摩尔焓)ofsubstanceB,i.e.,H(B,T,p)HB

CIngeneral,themolardifferentialchangeofany tyL(=V,U,H,S,F,G,CV, )ofth chemicalreaction0=BBcanbewrittenasrLm]T,p=BPartial ty(偏摩尔量ofsubstanceL(B,T,p)

LB BT,

Ccanbeexpressedusinganequationofchemicalcountingnumberof1:B(T,p,nB,…)=Themolarenthalpyofphasechange

Hm=[——]T,p=HB(T,p,nB,…)-HB(T,p,nBIfitconcernsaphasechangeofpure

Hm3.Themolarenthalpyof3.Themolarenthalpyofphasechangesubstance(物质的摩尔微分相变焓 omphasetomMolarMolarenthalpyofphysicalevaoration,fusionandMolarenthalpyofevaporation摩尔汽化焓gH*Molarenthalpyoffusion(摩尔熔化焓) mMolarenthalpyofsublimation摩尔升华焓) vap

H2O(s):fusfus

=fus

ForachangeofpuresubstanceBinphaseintoBinsolution,itmaybewrittenasThemolarenthalpyofphasechangelHm=

(1)Molarinternalenergyandmolarenthalpy化学反 0BB e.g.,aA+bB=yY+BMolarinternalenergy摩尔热力学能[变 V.MolarchangeV.Molarchangeof ofchemicalreactionsystems化学反应体系的rHm

H ofAccordingGB3102.8-93,thepressureofStandardstateofgas(气体的标准态):ThegasbehavesasperfectgasatT,pnomatteritispuresubstancegasorthegasinamixture.Standardstatesofliquidsolid)液体(或固体)的标准态)Theliquid(solid)istheliquid(solid)ofpuresubstanceatT,p,nomatteritispuresubstanceinacomposite.Note:TheTofthermodynamicstandardstatearbitrar.H ermodynamicdataowereobtainedatT=298.15K.

Thermodnamicstandardstate prescribesonlythepressure,p=100kPa,Tisartificial.However,thestandardthermodynamicdatawereoftenobtainedatT=298.15K.Standardstateofgas(气体的标准态):ItindicatesalwaysthepuregasBatTandpbehavingasaperfectgasregardlessofthatBisapuregasorBisinamixture.Standardstateofliquidorsolid液体(或固体)的标准态):ItindicatestheliquidorsolidofpuresubstanceBatT,p,regardlessofthatBisliquidofapuresubstanceorBisinamixture.(3)Thestandardmolarenthalpyofreactions(化学反应的标准摩尔焓[变(3)Thestandardmolarenthalpyofreactions(化学反应的标准摩尔焓[变Standardmolarenthalpyofreaction反应的标准摩尔焓[变 mFor aA+bB rHm(T)= Y T)+z T-aHm(A,Phase,T)-bHm(B,Phase,T)Formula(1)and(2)dohaveno

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论