甘肃省兰州市五十一中2023年高三4月教学质量检测试题(二)数学试题试卷含解析_第1页
甘肃省兰州市五十一中2023年高三4月教学质量检测试题(二)数学试题试卷含解析_第2页
甘肃省兰州市五十一中2023年高三4月教学质量检测试题(二)数学试题试卷含解析_第3页
甘肃省兰州市五十一中2023年高三4月教学质量检测试题(二)数学试题试卷含解析_第4页
甘肃省兰州市五十一中2023年高三4月教学质量检测试题(二)数学试题试卷含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

甘肃省兰州市五十一中2023年高三4月教学质量检测试题(二)数学试题试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.△ABC的内角A,B,C的对边分别为,已知,则为()A. B. C.或 D.或2.如图,中,点D在BC上,,将沿AD旋转得到三棱锥,分别记,与平面ADC所成角为,,则,的大小关系是()A. B.C.,两种情况都存在 D.存在某一位置使得3.已知,则不等式的解集是()A. B. C. D.4.已知函数为奇函数,则()A. B.1 C.2 D.35.如图,这是某校高三年级甲、乙两班在上学期的5次数学测试的班级平均分的茎叶图,则下列说法不正确的是()A.甲班的数学成绩平均分的平均水平高于乙班B.甲班的数学成绩的平均分比乙班稳定C.甲班的数学成绩平均分的中位数高于乙班D.甲、乙两班这5次数学测试的总平均分是1036.将4名大学生分配到3个乡镇去当村官,每个乡镇至少一名,则不同的分配方案种数是()A.18种 B.36种 C.54种 D.72种7.阅读如图的程序框图,运行相应的程序,则输出的的值为()A. B. C. D.8.若直线经过抛物线的焦点,则()A. B. C.2 D.9.已知函数的图像的一条对称轴为直线,且,则的最小值为()A. B.0 C. D.10.设集合(为实数集),,,则()A. B. C. D.11.若不等式对恒成立,则实数的取值范围是()A. B. C. D.12.已知函数,若函数在上有3个零点,则实数的取值范围为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知数列的首项,函数在上有唯一零点,则数列|的前项和__________.14.已知为偶函数,当时,,则__________.15.在的展开式中,各项系数之和为,则展开式中的常数项为__________________.16.已知函数在定义域R上的导函数为,若函数没有零点,且,当在上与在R上的单调性相同时,则实数k的取值范围是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆()的离心率为,且经过点.(1)求椭圆的方程;(2)过点作直线与椭圆交于不同的两点,,试问在轴上是否存在定点使得直线与直线恰关于轴对称?若存在,求出点的坐标;若不存在,说明理由.18.(12分)已知定点,,直线、相交于点,且它们的斜率之积为,记动点的轨迹为曲线。(1)求曲线的方程;(2)过点的直线与曲线交于、两点,是否存在定点,使得直线与斜率之积为定值,若存在,求出坐标;若不存在,请说明理由。19.(12分)某职称晋级评定机构对参加某次专业技术考试的100人的成绩进行了统计,绘制了频率分布直方图(如图所示),规定80分及以上者晋级成功,否则晋级失败.晋级成功晋级失败合计男16女50合计(1)求图中的值;(2)根据已知条件完成下面列联表,并判断能否有的把握认为“晋级成功”与性别有关?(3)将频率视为概率,从本次考试的所有人员中,随机抽取4人进行约谈,记这4人中晋级失败的人数为,求的分布列与数学期望.(参考公式:,其中)0.400.250.150.100.050.0250.7801.3232.0722.7063.8415.02420.(12分)如图,已知正方形所在平面与梯形所在平面垂直,BM∥AN,,,.(1)证明:平面;(2)求点N到平面CDM的距离.21.(12分)已知函数()的图象在处的切线为(为自然对数的底数)(1)求的值;(2)若,且对任意恒成立,求的最大值.22.(10分)已知函数(1)当时,求不等式的解集;(2)若函数的值域为A,且,求a的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】

由正弦定理可求得,再由角A的范围可求得角A.【详解】由正弦定理可知,所以,解得,又,且,所以或。故选:D.【点睛】本题主要考查正弦定理,注意角的范围,是否有两解的情况,属于基础题.2、A【解析】

根据题意作出垂线段,表示出所要求得、角,分别表示出其正弦值进行比较大小,从而判断出角的大小,即可得答案.【详解】由题可得过点作交于点,过作的垂线,垂足为,则易得,.设,则有,,,可得,.,,;,;,,,.综上可得,.故选:.【点睛】本题考查空间直线与平面所成的角的大小关系,考查三角函数的图象和性质,意在考查学生对这些知识的理解掌握水平.3、A【解析】

构造函数,通过分析的单调性和对称性,求得不等式的解集.【详解】构造函数,是单调递增函数,且向左移动一个单位得到,的定义域为,且,所以为奇函数,图像关于原点对称,所以图像关于对称.不等式等价于,等价于,注意到,结合图像关于对称和单调递增可知.所以不等式的解集是.故选:A【点睛】本小题主要考查根据函数的单调性和对称性解不等式,属于中档题.4、B【解析】

根据整体的奇偶性和部分的奇偶性,判断出的值.【详解】依题意是奇函数.而为奇函数,为偶函数,所以为偶函数,故,也即,化简得,所以.故选:B【点睛】本小题主要考查根据函数的奇偶性求参数值,属于基础题.5、D【解析】

计算两班的平均值,中位数,方差得到正确,两班人数不知道,所以两班的总平均分无法计算,错误,得到答案.【详解】由题意可得甲班的平均分是104,中位数是103,方差是26.4;乙班的平均分是102,中位数是101,方差是37.6,则A,B,C正确.因为甲、乙两班的人数不知道,所以两班的总平均分无法计算,故D错误.故选:.【点睛】本题考查了茎叶图,平均值,中位数,方差,意在考查学生的计算能力和应用能力.6、B【解析】

把4名大学生按人数分成3组,为1人、1人、2人,再把这三组分配到3个乡镇即得.【详解】把4名大学生按人数分成3组,为1人、1人、2人,再把这三组分配到3个乡镇,则不同的分配方案有种.故选:.【点睛】本题考查排列组合,属于基础题.7、C【解析】

根据给定的程序框图,计算前几次的运算规律,得出运算的周期性,确定跳出循环时的n的值,进而求解的值,得到答案.【详解】由题意,,第1次循环,,满足判断条件;第2次循环,,满足判断条件;第3次循环,,满足判断条件;可得的值满足以3项为周期的计算规律,所以当时,跳出循环,此时和时的值对应的相同,即.故选:C.【点睛】本题主要考查了循环结构的程序框图的计算与输出问题,其中解答中认真审题,得出程序运行时的计算规律是解答的关键,着重考查了推理与计算能力.8、B【解析】

计算抛物线的交点为,代入计算得到答案.【详解】可化为,焦点坐标为,故.故选:.【点睛】本题考查了抛物线的焦点,属于简单题.9、D【解析】

运用辅助角公式,化简函数的解析式,由对称轴的方程,求得的值,得出函数的解析式,集合正弦函数的最值,即可求解,得到答案.【详解】由题意,函数为辅助角,由于函数的对称轴的方程为,且,即,解得,所以,又由,所以函数必须取得最大值和最小值,所以可设,,所以,当时,的最小值,故选D.【点睛】本题主要考查了正弦函数的图象与性质,其中解答中利用三角恒等变换的公式,化简函数的解析式,合理利用正弦函数的对称性与最值是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.10、A【解析】

根据集合交集与补集运算,即可求得.【详解】集合,,所以所以故选:A【点睛】本题考查了集合交集与补集的混合运算,属于基础题.11、B【解析】

转化为,构造函数,利用导数研究单调性,求函数最值,即得解.【详解】由,可知.设,则,所以函数在上单调递增,所以.所以.故的取值范围是.故选:B【点睛】本题考查了导数在恒成立问题中的应用,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.12、B【解析】

根据分段函数,分当,,将问题转化为的零点问题,用数形结合的方法研究.【详解】当时,,令,在是增函数,时,有一个零点,当时,,令当时,,在上单调递增,当时,,在上单调递减,所以当时,取得最大值,因为在上有3个零点,所以当时,有2个零点,如图所示:所以实数的取值范围为综上可得实数的取值范围为,故选:B【点睛】本题主要考查了函数的零点问题,还考查了数形结合的思想和转化问题的能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

由函数为偶函数,可得唯一零点为,代入可得数列的递推关系式,再进行配凑转换为等比数列,最后运用分部求和可得答案.【详解】因为为偶函数,在上有唯一零点,所以,∴,∴,∴为首项为2,公比为2的等比数列.所以,.故答案为:【点睛】本题主要考查了函数的奇偶性和函数的零点,同时也考查了由递推关系式求数列的通项,考查了数列的分部求和,属于中档题.14、【解析】

由偶函数的性质直接求解即可【详解】.故答案为【点睛】本题考查函数的奇偶性,对数函数的运算,考查运算求解能力15、【解析】

利用展开式各项系数之和求得的值,由此写出展开式的通项,令指数为零求得参数的值,代入通项计算即可得解.【详解】的展开式各项系数和为,得,所以,的展开式通项为,令,得,因此,展开式中的常数项为.故答案为:.【点睛】本题考查二项展开式中常数项的计算,涉及二项展开式中各项系数和的计算,考查计算能力,属于基础题.16、【解析】

由题意可知:为上的单调函数,则为定值,由指数函数的性质可知为上的增函数,则在,单调递增,求导,则恒成立,则,根据函数的正弦函数的性质即可求得的取值范围.【详解】若方程无解,则或恒成立,所以为上的单调函数,都有,则为定值,设,则,易知为上的增函数,,,又与的单调性相同,在上单调递增,则当,,恒成立,当,时,,,,,,此时,故答案为:【点睛】本题考查导数的综合应用,考查利用导数求函数的单调性,正弦函数的性质,辅助角公式,考查计算能力,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)见解析【解析】

(1)由题得a,b,c的方程组求解即可(2)直线与直线恰关于轴对称,等价于的斜率互为相反数,即,整理.设直线的方程为,与椭圆联立,将韦达定理代入整理即可.【详解】(1)由题意可得,,又,解得,.所以,椭圆的方程为(2)存在定点,满足直线与直线恰关于轴对称.设直线的方程为,与椭圆联立,整理得,.设,,定点.(依题意则由韦达定理可得,,.直线与直线恰关于轴对称,等价于的斜率互为相反数.所以,,即得.又,,所以,,整理得,.从而可得,,即,所以,当,即时,直线与直线恰关于轴对称成立.特别地,当直线为轴时,也符合题意.综上所述,存在轴上的定点,满足直线与直线恰关于轴对称.【点睛】本题考查椭圆方程,直线与椭圆位置关系,熟记椭圆方程简单性质,熟练转化题目条件,准确计算是关键,是中档题.18、(1);(2)存在定点,见解析【解析】

(1)设动点,则,利用,求出曲线的方程.(2)由已知直线过点,设的方程为,则联立方程组,消去得,设,,,利用韦达定理求解直线的斜率,然后求解指向性方程,推出结果.【详解】解:(1)设动点,则,,,即,化简得:。由已知,故曲线的方程为。(2)由已知直线过点,设的方程为,则联立方程组,消去得,设,,则又直线与斜率分别为,,则。当时,,;当时,,。所以存在定点,使得直线与斜率之积为定值。【点睛】本题考查轨迹方程的求法,直线与椭圆的位置关系的综合应用,考查计算能力,属于中档题.19、(1);(2)列联表见解析,有超过的把握认为“晋级成功”与性别有关;(3)分布列见解析,=3【解析】

(1)由频率和为1,列出方程求的值;(2)由频率分布直方图求出晋级成功的频率,计算晋级成功的人数,填写列联表,计算观测值,对照临界值得出结论;(3)由频率分布直方图知晋级失败的频率,将频率视为概率,知随机变量服从二项分布,计算对应的概率值,写出分布列,计算数学期望.【详解】解:(1)由频率分布直方图各小长方形面积总和为1,可知,解得;(2)由频率分布直方图知,晋级成功的频率为,所以晋级成功的人数为(人),填表如下:晋级成功晋级失败合计男163450女94150合计2575100假设“晋级成功”与性别无关,根据上表数据代入公式可得,所以有超过的把握认为“晋级成功”与性别有关;(3)由频率分布直方图知晋级失败的频率为,将频率视为概率,则从本次考试的所有人员中,随机抽取1人进行约谈,这人晋级失败的概率为0.75,所以可视为服从二项分布,即,,故,,,,.所以的分布列为:01234数学期望为.或().【点睛】本题考查了频率分布直方图和离散型随机变量的分布列、数学期望的应用问题,属于中档题.若离散型随机变量,则.20、(1)证明见解析(2)【解析】

(1)因为正方形ABCD所在平面与梯形ABMN所在平面垂直,平面平面,,所以平面ABMN,因为平面ABMN,平面ABMN,所以,,因为,所以,因为,所以,所以,因为在直角梯形ABMN中,,所以,所以,所以,因为,所以平面.(2)如图,取BM的中点E,则,又BM∥AN,所以四边形ABEN是平行四边形,所以NE∥AB,又AB∥CD,所以NE∥CD,因为平面CDM,平面CDM,所以NE∥平面CDM,所以点N到平面CDM的距离与点E到平面CDM的距离相等,设点N到平面CDM的距离为h,由可得点B到平面CDM的距离为2h,由题易得平面BCM,所以,且,所以,又,所以由可得,解得,所以点N到平面CDM的距离为.21、(1)a=-1,b=1;(2)-1.【解析】(1)对求导得,根据函数的图象在处的切线为,列出方程组,即可求出的值;(2)由(1)可得,根据对任意恒成立,等价于对任意恒成立,构造,求出的单调性,由,,,,可得存在唯一的零点,使得,利用单调性可求出,即可求出的最大值.(1),.由题意知

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论