四川省绵阳是南山中学2022-2023学年高二数学第二学期期末教学质量检测试题含解析_第1页
四川省绵阳是南山中学2022-2023学年高二数学第二学期期末教学质量检测试题含解析_第2页
四川省绵阳是南山中学2022-2023学年高二数学第二学期期末教学质量检测试题含解析_第3页
四川省绵阳是南山中学2022-2023学年高二数学第二学期期末教学质量检测试题含解析_第4页
四川省绵阳是南山中学2022-2023学年高二数学第二学期期末教学质量检测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023高二下数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.的内角的对边分别为,,,若的面积为,则A. B. C. D.2.甲、乙、丙、丁四位同学一起去老师处问他们的成绩.老师说:“你们四人中有2位优秀,2位良好,我现在给丙看甲、乙的成绩,给甲看乙的成绩,给丁看丙的成绩.”看后丙对大家说:“我还是不知道我的成绩.”根据以上信息,则下列结论正确的是()A.甲可以知道四人的成绩 B.丁可以知道自己的成绩C.甲、丙可以知道对方的成绩 D.乙、丁可以知道自己的成绩3.观察两个变量(存在线性相关关系)得如下数据:则两变量间的线性回归方程为()A. B. C. D.4.抛物线的焦点为,点,为抛物线上一点,且不在直线上,则周长的最小值为A. B. C. D.5.已知复数满足,则其共轭复数在复平面内对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.在极坐标系中,圆ρ=2cosθ的圆心坐标为()A.(1,π2) B.(-1,π7.某小区有1000户居民,各户每月的用电量近似服从正态分布,则用电量在320度以上的居民户数估计约为()(参考数据:若随机变量服从正态分布,则,,.)A.17 B.23 C.34 D.468.已知点,则它的极坐标是()A. B.C. D.9.已知函数,若,,,则,,的大小关系是()A. B. C. D.10.使函数y=xsinx+cosx是增函数的区间可能是()A. B.(π,2π)C. D.(2π,3π)11.从装有除颜色外完全相同的个白球和个黑球的布袋中随机摸取一球,有放回地摸取次,设摸得黑球的个数为,已知,则等于()A. B. C. D.12.如图所示是一个几何体的三视图,则其表面积为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知等差数列满足,且,,成等比数列,则的所有值为________.14.一袋中有大小相同的4个红球和2个白球,给出下列结论:从中任取3球,恰有一个白球的概率是;从中有放回的取球6次,每次任取一球,则取到红球次数的方差为;从中有放回的取球3次,每次任取一球,则至少有一次取到红球的概率为.其中所有正确结论的序号是______.15.的展开式中的系数为.16.在的展开式中,含项的系数是_______________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)当时,求证:在上是单调递减函数;(2)若函数有两个正零点、,求的取值范围,并证明:.18.(12分)已知直线的参数方程为为参数和圆的极坐标方程为(1)将直线的参数方程化为普通方程,圆的极坐标方程化为直角坐标方程;(2)判断直线和圆的位置关系.19.(12分)如图,已知是圆锥的底面直径,是底面圆心,,,是母线的中点,是底面圆周上一点,.(1)求直线与底面所成的角的大小;(2)求异面直线与所成的角.20.(12分)如图,四棱锥P-ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.(1)证明:PA⊥BD;(2)若PD=AD,求二面角A-PB-C的余弦值.21.(12分)已知点P(3,1)在矩阵变换下得到点P′(5,-1).试求矩阵A和它的逆矩阵.22.(10分)已知数列满足:.(Ⅰ)若,且,,成等比数列,求;(Ⅱ)若,且,,,成等差数列,求.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】分析:利用面积公式和余弦定理进行计算可得。详解:由题可知所以由余弦定理所以故选C.点睛:本题主要考查解三角形,考查了三角形的面积公式和余弦定理。2、B【解析】

根据题意可逐句进行分析,已知四人中有2位优秀,2位良好,而丙知道甲和乙但不知道自己的成绩可知:甲和乙、丙和丁都只能一个是优秀,一个是良好,接下来,由上一步的结论,当甲知道乙的成绩后,就可以知道自己的成绩,同理,当丁知道丙的成绩后,就可以知道自己的成绩,从而选出答案.【详解】由丙知道甲和乙但不知道自己的成绩可知:甲和乙、丙和丁都只能一个是优秀,一个是良好;当甲知道乙的成绩后,就可以知道自己的成绩,但是甲不知道丙和丁的成绩;当丁知道丙的成绩后,就可以知道自己的成绩,但是丁不知道甲和乙的成绩;综上,只有B选项符合.故选:B.【点睛】本题是一道逻辑推理题,此类题目的推理方法是综合法和分析法,逐条分析题目条件语句即可,属于中等题.3、B【解析】分析:根据表中数据,计算、,再由线性回归方程过样本中心点,排除A、C、D选项即可.详解:根据表中数据,得;=(﹣10﹣6.99﹣5.01﹣2.98+3.98+5+7.99+8.01)=0,=(﹣9﹣7﹣5﹣3+4.01+4.99+7+8)=0;∴两变量x、y间的线性回归方程过样本中心点(0,0),可以排除A、C、D选项,B选项符合题意.故选:B.点睛:本题考查了线性回归方程过样本中心点的应用问题,是基础题目.对于回归方程,一定要注意隐含条件,样本中心满足回归方程,再者计算精准,正确理解题意,应用回归方程对总体进行估计.4、C【解析】

求△MAF周长的最小值,即求|MA|+|MF|的最小值,设点M在准线上的射影为D,根据抛物线的定义,可知|MF|=|MD|,因此,|MA|+|MF|的最小值,即|MA|+|MD|的最小值.根据平面几何知识,可得当D,M,A三点共线时|MA|+|MD|最小,因此最小值为xA﹣(﹣1)=5+1=6,∵|AF|==5,∴△MAF周长的最小值为11,故答案为:C.5、B【解析】分析:先求出z,然后根据共轭复数定义结合复数坐标写法即可.详解:由题可知:,所以所对应的坐标为(-1,1),故在第二象限,选B.点睛:考查复数的除法运算,复数的坐标表示,属于基础题.6、D【解析】

把圆的极坐标方程转化为直角坐标方程,求出圆心直角坐标即可.【详解】由ρ=2cosθ,得ρ2=2ρcosθ,化简为直角坐标方程为:x2+y2-2x=0,即x-12所以圆心(1,0),即圆心(1,0)的极坐标为(1,0).故选:D.【点睛】本题考查圆的极坐标方程和直角坐标方程的互化,属于基础题.7、B【解析】分析:先求用电量在320度以上的概率,再求用电量在320度以上的居民户数.详解:由题得所以,所以,所以求用电量在320度以上的居民户数为1000×0.023=23.故答案为B.点睛:(1)本题主要考查正态分布曲线的性质,意在考查学生对这些知识的掌握水平和数形结合的思想方法.(2)对于正态分布曲线的概率的计算,不要死记硬背,要结合其图像分析求解.8、C【解析】

由计算即可。【详解】在相应的极坐标系下,由于点位于第四象限,且极角满足,所以.故选C.【点睛】本题考查极坐标与直角坐标的互化,属于简单题。9、D【解析】

可以得出,从而得出c<a,同样的方法得出a<b,从而得出a,b,c的大小关系.【详解】,,根据对数函数的单调性得到a>c,,又因为,,再由对数函数的单调性得到a<b,∴c<a,且a<b;∴c<a<b.故选D.【点睛】考查对数的运算性质,对数函数的单调性.比较两数的大小常见方法有:做差和0比较,做商和1比较,或者构造函数利用函数的单调性得到结果.10、C【解析】

求函数y=xsinx+cosx的导函数,根据导函数分析出它的单调增区间.【详解】由函数得,=.观察所给的四个选项中,均有,故仅需,结合余弦函数的图像可知,时有,所以答案选C.【点睛】本题主要考查利用导数研究函数的单调性,对于函数,当时,函数单调递增;当时,函数单调递减,这是解题关键.此题属于基础题.11、C【解析】

根据二项分布的数学期望计算,即可得出答案。【详解】根据题意可得出,即所以故选C【点睛】本题考查二项分布,属于基础题。12、A【解析】

根据三视图可得对应的三棱锥,逐个计算其侧面积和底面积可得其表面积.【详解】将三视图复原后得到的几何体即为如图所示的三棱锥,其中是棱长为4的正方体的顶点,为正方体的底面中心,注意到所以,,,因此该三棱锥的表面积等于.故选A.【点睛】本题考查三视图,要求根据三视图复原几何体,注意复原前后点、线、面的关系.二、填空题:本题共4小题,每小题5分,共20分。13、3,4【解析】

先设等差数列公差为,根据题意求出公差,进而可求出结果.【详解】设等差数列公差为,因为,且,,成等比数列,所以,即,解得或.所以或.故答案为3,4【点睛】本题主要考查等差数列的基本量的计算,熟记等差数列的通项公式即可,属于基础题型.14、【解析】分析:①所求概率为,计算即得结论;

②利用取到红球次数可知其方差为;通过每次取到红球的概率可知所求概率为.详解:①从中任取3球,恰有一个白球的概率是,故正确;

②从中有放回的取球6次,每次任取一球,

取到红球次数,其方差为,故正确;

③从中有放回的取球3次,每次任取一球,每次取到红球的概率,

∴至少有一次取到红球的概率为,故正确.

故答案为:①②③.点睛:本题主要考查命题的真假判断,涉及概率的计算,考查学生的计算能力.15、70.【解析】试题分析:设的展开式中含的项为第项,则由通项知.令,解得,∴的展开式中的系数为.考点:二项式定理.16、84【解析】

通过求出各项二项展开式中项的系数,利用组合数的性质求出系数和即可得结果.【详解】的展开式中,含项的系数为:,故答案是:84.【点睛】该题考查的是有关二项式对应项的系数和的问题,涉及到的知识点有指定项的二项式系数,组合数公式,属于简单题目.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见证明;(2)实数的取值范围是,证明见解析.【解析】

(1)由题意得出在区间上恒成立,由得出,构造函数,证明在区间上恒成立即可;(2)由利用参变量分离法得出,将题意转化为当直线与函数在上有两个交点时求的取值范围,利用数形结合思想求解即可,然后由题意得出,取自然对数得,等式作差得,利用分析得出所证不等式等价于,然后构造函数证明即可.【详解】(1),.由题意知,不等式在区间上恒成立,由于,当时,,构造函数,其中,则,令,得.当时,;当时,.所以,函数在处取得极大值,亦即最大值,即,,所以,.所以,不等式在区间上恒成立,因此,当时,函数在上是单调递减函数;(2)令,可得令,则.当时,,当时,.当时,函数单调递减,当时,函数单调递增.,当时,,当时..时,函数有两个正零点,因此,实数的取值范围是.由上知时,,由题意得,上述等式两边取自然对数得,两式作差得,,要证,即证.由于,则,即证,即证,令,即证,其中.构造函数,其中,即证在上恒成立.,所以,函数在区间上恒成立,所以,,因此,.【点睛】本题考查利用导数证明函数的单调性,以及利用导数研究函数的零点问题,同时也考查了利用导数证明函数不等式,难点在于构造新函数,借助新函数的单调性来证明,考查化归与转化数学思想的应用,属于难题.18、(1),;(2)相交.【解析】

(1)利用加减消参法得到直线l的普通方程,利用极坐标转化直角坐标公式的结论转化圆C的方程;(2)利用圆心到直线的距离与半径的比较判断直线与圆的位置关系.【详解】(1)消去参数,得直线的普通方程为;圆极坐标方程化为.两边同乘以得,消去参数,得⊙的直角坐标方程为:.(2)圆心到直线的距离,所以直线和⊙相交.19、(1);(2).【解析】

(1)作出直线与底面所成的角,解三角形求得线面角的大小.(2)作出直线与所成的角,解三角形求得异面直线所成角的大小.【详解】(1)因为是圆锥的底面直径,是底面圆心,,是母线的中点,是底面圆周上一点,.,圆锥母线长.过作,交于,连接,则是中点,.,所以,所以是直线和底面所成角.因为,所以.即与底面所成的角的大小为.(2)由(1)得,.连接,则,,所以是异面直线与所成的角,由余弦定理得.所以异面直线与所成的角为.【点睛】本小题主要考查线面角、线线角的求法,考查空间想象能力,属于中档题.20、(1)见解析(2)【解析】

试题解析:(1)∵∠DAB=600,AB=2AD,由余弦定理得BD=AD,从而BD2+AD2=AB2故BD⊥AD,即BD⊥平面PAD,故PA⊥BD(2)以D为坐标原点,AD的长为单位长,射线DA为X轴的正半轴建立空间坐标系则A(1,0,0),B(0,,0),C(-1,,0),P(0,0,1)设平面PAB的法向量,则,解得平面PBC的法向量,则,解得考点:本题考查线线垂直二面角点评:解决本题的关键是用向量法

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论