2023年陕西省西安工业大学附中数学高一第二学期期末学业水平测试模拟试题含解析_第1页
2023年陕西省西安工业大学附中数学高一第二学期期末学业水平测试模拟试题含解析_第2页
2023年陕西省西安工业大学附中数学高一第二学期期末学业水平测试模拟试题含解析_第3页
2023年陕西省西安工业大学附中数学高一第二学期期末学业水平测试模拟试题含解析_第4页
2023年陕西省西安工业大学附中数学高一第二学期期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一下数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中,,,,,则()A.或 B. C. D.2.电视台某节目组要从名观众中抽取名幸运观众.先用简单随机抽样从人中剔除人,剩下的人再按系统抽样方法抽取人,则在人中,每个人被抽取的可能性()A.都相等,且为 B.都相等,且为C.均不相等 D.不全相等3.函数,若方程恰有三个不同的解,记为,则的取值范围是()A. B. C. D.4.已知,,则在方向上的投影为()A. B. C. D.5.如图,正方体中,异面直线与所成角的正弦值等于A. B. C. D.16.已知满足,则()A.1 B.3 C.5 D.77.得到函数的图象,只需将的图象()A.向左移动 B.向右移动 C.向左移动 D.向右移动8.不等式的解集是()A. B.C. D.9.中,,,,则的面积等于()A. B. C.或 D.或10.在面积为S的平行四边形ABCD内任取一点P,则三角形PBD的面积大于的概率为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.终边经过点,则_____________12.设,则的值是____.13.已知等差数列中,,,则该等差数列的公差的值是______.14.设的内角、、的对边分别为、、,且满足.则______.15.在中,角,,所对的边分别为,,,若,则角最大值为______.16.已知,,,则的最小值为________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设向量,,其中,,且.(1)求实数的值;(2)若,且,求的值.18.已知向量是夹角为的单位向量,,(1)求;(2)当m为何值时,与平行?19.泉州与福州两地相距约200千米,一辆货车从泉州匀速行驶到福州,规定速度不得超过千米/时,已知货车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度千米/时的平方成正比,比例系数为0.01;固定部分为64元.(1)把全程运输成本元表示为速度千米/时的函数,并指出这个函数的定义域;(2)为了使全程运输成本最小,货车应以多大速度行驶?20.已知,函数(其中),且图象在轴右侧的第一个最高点的横坐标为,并过点.(1)求函数的解析式;(2)求函数的单调增区间.21.已知三角形ABC的顶点为,,,M为AB的中点.(1)求CM所在直线的方程;(2)求的面积.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

由三角形面积公式可得,进而可得解.【详解】在中,,,,,可得,所以,所以【点睛】本题主要考查了三角形的面积公式,属于基础题.2、A【解析】

根据随机抽样等可能抽取的性质即可求解.【详解】由随机抽样等可能抽取,可知每个个体被抽取的可能性相等,故抽取的概率为.故选:A【点睛】本题考查了随机抽样的特点,属于基础题.3、D【解析】

由方程恰有三个不同的解,作出的图象,确定,的取值范围,得到的对称性,利用数形结合进行求解即可.【详解】设

作出函数的图象如图:由

则当

,,

即函数的一条对称轴为

,要使方程恰有三个不同的解,则

,

此时

,

关于

对称,则

,即

,则

的取值范围是,选D.【点睛】本题主要考查了方程与函数,数学结合是解决本题的关键,数学结合也是数学中比较重要的一种思想方法.4、A【解析】在方向上的投影为,选A.5、D【解析】

由线面垂直的判定定理得:,又,所以面,由线面垂直的性质定理得:,即可求解.【详解】解:连接,因为四边形为正方形,所以,又,所以面,所以,所以异面直线与所成角的正弦值等于1,故选D.【点睛】本题考查了线面垂直的判定定理及性质定理,属中档题.6、B【解析】

已知两个边和一个角,由余弦定理,可得。【详解】由题得,,,代入,化简得,解得(舍)或.故选:B【点睛】本题考查用余弦定理求三角形的边,是基础题。7、B【解析】

直接利用三角函数图象的平移变换法则,对选项中的变换逐一判断即可.【详解】函数的图象,向左平移个单位,得,错;函数的图象,向右平移个单位,得,对.函数的图象,向左平移个单位,得,错;函数的图象,向右平移个单位,得,错,故选B.【点睛】本题考查了三角函数的图象,重点考查学生对三角函数图象变换规律的理解与掌握,能否正确处理先周期变换后相位变换这种情况下图象的平移问题,反映学生对所学知识理解的深度.8、D【解析】

把不等式,化简为不等式,即可求解,得到答案.【详解】由题意,不等式,可化为,即,解得或,所以不等式的解集为.故选:D.【点睛】本题主要考查了分式不等式的求解,其中解答中熟记分式不等式的解法,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.9、D【解析】

先根据余弦定理求AC,再根据面积公式得结果.【详解】因为,所以或2,因此的面积等于或等于,选D.【点睛】本题考查余弦定理与三角形面积公式,考查基本求解能力,属基础题.10、A【解析】

转化条件求出满足要求的P点的范围,求出面积比即可得解.【详解】如图,设P到BD距离为h,A到BD距离为H,则,,满足条件的点在和中,所求概率.故选:A.【点睛】本题考查了几何概型的概率计算,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

根据正弦值的定义,求得正弦值.【详解】依题意.故答案为:【点睛】本小题主要考查根据角的终边上一点的坐标求正弦值,属于基础题.12、【解析】

根据二倍角公式得出,再根据诱导公式即可得解.【详解】解:由题意知:故,即.故答案为.【点睛】本题考查了二倍角公式和诱导公式的应用,属于基础题.13、【解析】

根据等差数列的通项公式即可求解【详解】故答案为:【点睛】本题考查等差通项基本量的求解,属于基础题14、4【解析】

解法1有题设及余弦定理得.故.解法2如图4,过点作,垂足为.则,.由题设得.又,联立解得,.故.解法3由射影定理得.又,与上式联立解得,.故.15、【解析】

根据余弦定理列式,再根据基本不等式求最值【详解】因为所以角最大值为【点睛】本题考查余弦定理以及利用基本不等式求最值,考查基本分析求解能力,属中档题16、1【解析】

由题意整体代入可得,由基本不等式可得.【详解】由,,,则.当且仅当=,即a=3且b=时,取得最小值1.故答案为:1.【点睛】本题考查基本不等式求最值,整体法并凑出可用基本不等式的形式是解决问题的关键,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】

(1)利用向量模的坐标求法可得,再利用同角三角函数的基本关系即可求解.(2)根据向量数量积的坐标表示以及两角差的余弦公式的逆应用可得,进而求出,根据同角三角函数的基本关系即可求解.【详解】(1)由知所以.又因为,所以.因为,所以,所以.又因为,所以.(2)由(1)知.由,得,即.因为,所以,所以.所以,因此.【点睛】本题考查了向量数量积的坐标表示、两角差的余弦公式以及同角三角函数的基本关系,属于基础题.18、(1)1;(2)﹣6【解析】

(1)利用单位向量的定义,直接运算即可;(2)利用,有,得出,然后列方程求解即可【详解】解:(1);(2)当,则存在实数使,所以不共线,得,【点睛】本题考查向量平行的定义,注意列方程运算即可,属于简单题19、(1),;(2),货车应以千米/时速度行驶,货车应以千米/时速度行驶【解析】

(1)先计算出从泉州匀速行驶到福州所用时间,然后乘以每小时的运输成本(可变部分加固定部分),由此求得全程运输成本,并根据速度限制求得定义域.(2)由,,对进行分类讨论.当时,利用基本不等式求得行驶速度.当时,根据的单调性求得行驶速度.【详解】(1)依题意一辆货车从泉州匀速行驶到福州所用时间为小时,全程运输成本为,所求函数定义域为;(2)当时,故有,当且仅当,即时,等号成立.当时,易证在上单调递减故当千米/时,全程运输成本最小.综上,为了使全程运输成本最小,,货车应以千米/时速度行驶,货车应以千米/时速度行驶.【点睛】本小题主要考查函数模型在实际生活中的应用,考查基本不等式求最小值,考查函数的单调性,考查分类讨论的数学思想方法,属于中档题.20、(1);(2).【解析】

(1)根据向量的数量积得,结合,即可求解;(2)令即可求得增区间.【详解】(1)由题图象在轴右侧的第一个最高点的横坐标为,并过点所以,解得,,解得:,所以;(2)令函数的单调增区间为.【点睛】此题考查根据平面向量的数量积,求函数解析式,根据三角函数的顶点坐标和曲线上的点的坐标求参数,利用

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论