2024届南京市联合体数学九年级第一学期期末监测试题含解析_第1页
2024届南京市联合体数学九年级第一学期期末监测试题含解析_第2页
2024届南京市联合体数学九年级第一学期期末监测试题含解析_第3页
2024届南京市联合体数学九年级第一学期期末监测试题含解析_第4页
2024届南京市联合体数学九年级第一学期期末监测试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届南京市联合体数学九年级第一学期期末监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.下列方程中是关于的一元二次方程的是()A. B. C., D.2.已知抛物线y=x2+3向左平移2个单位,那么平移后的抛物线表达式是()A.y=(x+2)2+3B.y=(x﹣2)2+3C.y=x2+1D.y=x2+53.如图,、分别与相切于、两点,点为上一点,连接,,若,则的度数为()A. B. C. D.4.如图,是的直径,,是的两条弦,,连接,若,则的度数是()A.10° B.20° C.30° D.40°5.在同一平面直角坐标系中,反比例函数y(b≠0)与二次函数y=ax2+bx(a≠0)的图象大致是()A. B.C. D.6.已知x=﹣2是一元二次方程x2+mx+4=0的一个解,则m的值是()A.﹣4 B.4 C.0 D.0或47.如图是一棵小树一天内在太阳下不同时刻的照片,将它们按时间先后顺序进行排列正确的是()A.③—④—①—② B.②—①—④—③ C.④—①—②—③ D.④—①—③—②8.中国在夏代就出现了相当于砝码的“权”,此后的多年间,不同朝代有不同形状和材质的“权”作为衡量的量具.下面是一个“”形增砣砝码,其俯视图如下图所示,则其主视图为()A. B. C. D.9.如图,在正方形中,点是对角线的交点,过点作射线分别交于点,且,交于点.给出下列结论:;C;四边形的面积为正方形面积的;.其中正确的是()A. B. C. D.10.如图,AB是⊙O的弦,OD⊥AB于D交⊙O于E,则下列说法错误的是()A.AD=BD B.∠ACB=∠AOE C.弧AE=弧BE D.OD=DE11.若数据2,x,4,8的平均数是4,则这组数据的中位数和众数是()A.3和2

B.4和2

C.2和2

D.2和412.已知x=1是方程x2+m=0的一个根,则m的值是()A.﹣1 B.1 C.﹣2 D.2二、填空题(每题4分,共24分)13.如图,校园内有一棵与地面垂直的树,数学兴趣小组两次测量它在地面上的影子,第一次是阳光与地面成60°角时,第二次是阳光与地面成30°角时,两次测量的影长相差8米,则树高_____________米(结果保留根号).14.如图,电灯在横杆的正上方,在灯光下的影子为,,米,米,点到的距离是3米,则到的距离是__________米.15.如图,点在函数的图象上,都是等腰直角三角形.斜边都在轴上(是大于或等于2的正整数),点的坐标是______.16.若关于x的一元二次方程x2+mx+m2﹣19=0的一个根是﹣3,则m的值是_____.17.如图,正方形EFGH的四个顶点分别在正方形ABCD的四条边上,若正方形EFGH与正方形ABCD的相似比为,则()的值为_____.18.某果园2014年水果产量为100吨,2016年水果产量为144吨,则该果园水果产量的年平均增长率为_______________.三、解答题(共78分)19.(8分)已知:如图,平行四边形,是的角平分线,交于点,且,;求的度数.20.(8分)先阅读下列材料,然后解后面的问题.材料:一个三位自然数(百位数字为a,十位数字为b,个位数字为c),若满足a+c=b,则称这个三位数为“欢喜数”,并规定F()=ac.如374,因为它的百位上数字3与个位数字4之和等于十位上的数字7,所以374是“欢喜数”,∴F(374)=3×4=1.(1)对于“欢喜数”,若满足b能被9整除,求证:“欢喜数”能被99整除;(2)已知有两个十位数字相同的“欢喜数”m,n(m>n),若F(m)﹣F(n)=3,求m﹣n的值.21.(8分)如图,已知AB是⊙O的直径,点C、D在⊙O上,点E在⊙O外,∠EAC=∠B=60°.(1)求∠ADC的度数;(2)求证:AE是⊙O的切线.22.(10分)某型号飞机的机翼形状如图所示,已知所在直线互相平行且都与所在直线垂直,.,,,.求的长度(参考数,,,,,)23.(10分)宿迁市政府为了方便市民绿色出行,推出了共享单车服务.图①是某品牌共享单车放在水平地面上的实物图,图②是其示意图,其中、都与地面l平行,车轮半径为,,,坐垫与点的距离为.(1)求坐垫到地面的距离;(2)根据经验,当坐垫到的距离调整为人体腿长的0.8时,坐骑比较舒适.小明的腿长约为,现将坐垫调整至坐骑舒适高度位置,求的长.(结果精确到,参考数据:,,)24.(10分)已知二次函数的图象和轴交于点、,与轴交于点,点是直线上方的抛物线上的动点.(1)求直线的解析式.(2)当是抛物线顶点时,求面积.(3)在点运动过程中,求面积的最大值.25.(12分)经过校园某路口的行人,可能左转,也可能直行或右转.假设这三种可能性相同,现有小明和小亮两人经过该路口,请用列表法或画树状图法,求两人之中至少有一人直行的概率.26.解方程:x2-2x-3=0

参考答案一、选择题(每题4分,共48分)1、A【分析】根据一元二次方程的定义解答.【题目详解】A、是一元二次方程,故A正确;

B、有两个未知数,不是一元二次方程,故B错误;

C、是分式方程,不是一元二次方程,故C正确;

D、a=0时不是一元二次方程,故D错误;

故选:A.【题目点拨】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是1.2、A【解题分析】结合向左平移的法则,即可得到答案.【题目详解】解:将抛物线y=x2+3向左平移2个单位可得y=(x+2)2+3,故选A.【题目点拨】此类题目主要考查二次函数图象的平移规律,解题的关键是要搞清已知函数解析式确定平移后的函数解析式,还是已知平移后的解析式求原函数解析式,然后根据图象平移规律“左加右减、上加下减“进行解答.3、C【分析】先利用切线的性质得∠OAP=∠OBP=90°,再利用四边形的内角和计算出∠AOB的度数,然后根据圆周角定理计算∠ACB的度数.【题目详解】解:连接、,∵、分别与相切于、两点,∴,,∴.∴,∴.故选C.【题目点拨】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了圆周角定理.4、D【分析】连接AD,由AB是⊙O的直径及CD⊥AB可得出弧BC=弧BD,进而可得出∠BAD=∠BAC,利用圆周角定理可得出∠BOD的度数.【题目详解】连接AD,如图所示:

∵AB是⊙O的直径,CD⊥AB,

∴弧BC=弧BD,

∴∠BAD=∠BAC=20°.

∴∠BOD=2∠BAD=40°,

故选:D.【题目点拨】此题考查了圆周角定理以及垂径定理.此题难度不大,利用圆周角定理求出∠BOD的度数是解题的关键.5、D【分析】直接利用二次函数图象经过的象限得出a,b的值取值范围,进而利用反比例函数的性质得出答案.【题目详解】A、抛物线y=ax2+bx开口方向向上,则a>1,对称轴位于轴的右侧,则a,b异号,即b<1.所以反比例函数y的图象位于第二、四象限,故本选项错误;B、抛物线y=ax2+bx开口方向向上,则a>1,对称轴位于轴的左侧,则a,b同号,即b>1.所以反比例函数y的图象位于第一、三象限,故本选项错误;C、抛物线y=ax2+bx开口方向向下,则a<1,对称轴位于轴的右侧,则a,b异号,即b>1.所以反比例函数y的图象位于第一、三象限,故本选项错误;D、抛物线y=ax2+bx开口方向向下,则a<1,对称轴位于轴的右侧,则a,b异号,即b>1.所以反比例函数y的图象位于第一、三象限,故本选项正确;故选D.【题目点拨】本题考查了反比例函数的图象以及二次函数的图象,要熟练掌握二次函数,反比例函数中系数与图象位置之间关系.6、B【分析】直接把x=﹣2代入已知方程就得到关于m的方程,再解此方程即可.【题目详解】∵x=﹣2是一元二次方程x2+mx+4=0的一个解,

∴4−2m+4=0,

∴m=4.

故选B.【题目点拨】本题考查一元二次方程的解,解题的关键是将x=﹣2代入已知方程.7、B【分析】根据一天中影子的长短和方向判断即可.【题目详解】众所周知,影子方向的变化是上午时朝向西边,中午时朝向北边,下午时朝向东边;影子长短的变化是由长变短再变长,结合方向和长短的变化即可得出答案故选B【题目点拨】本题主要考查影子的方向和长短变化,掌握影子的方向和长短的变化规律是解题的关键.8、A【分析】根据从正面看得到的图形是主视图,可得答案.【题目详解】从正面看中间的矩形的左右两边是虚的直线,故选:A.【题目点拨】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.9、B【分析】根据全等三角形的判定(ASA)即可得到正确;根据相似三角形的判定可得正确;根据全等三角形的性质可得正确;根据相似三角形的性质和判定、勾股定理,即可得到答案.【题目详解】解:四边形是正方形,,,,,,故正确;,点四点共圆,∴,∴,故正确;,,,故正确;,,又,是等腰直角三角形,,,,,,,,,,又中,,,,故错误,故选.【题目点拨】本题考查全等三角形的判定(ASA)和性质、相似三角形的性质和判定、勾股定理,解题的关键是掌握全等三角形的判定(ASA)和性质、相似三角形的性质和判定.10、D【解题分析】由垂径定理和圆周角定理可证,AD=BD,AD=BD,AE=BE,而点D不一定是OE的中点,故D错误.【题目详解】∵OD⊥AB,∴由垂径定理知,点D是AB的中点,有AD=BD,=,∴△AOB是等腰三角形,OD是∠AOB的平分线,有∠AOE=12∠AOB,由圆周角定理知,∠C=12∠AOB,∴∠ACB=∠AOE,故A、B、C正确,而点D不一定是OE的中点,故错误.故选D.【题目点拨】本题主要考查圆周角定理和垂径定理,熟练掌握这两个定理是解答此题的关键.11、A【分析】平均数的计算方法是求出所有数据的和,然后除以数据的总个数;据此先求得x的值,再将数据按从小到大排列,将中间的两个数求平均值即可得到中位数,众数是出现次数最多的数.【题目详解】这组数的平均数为=4,解得:x=2;所以这组数据是:2,2,4,8;中位数是(2+4)÷2=3,2在这组数据中出现2次,4出现一次,8出现一次,所以众数是2;故选:A.【题目点拨】本题考查平均数和中位数和众数的概念.12、A【分析】把x=1代入方程,然后解一元一次方程即可.【题目详解】把x=1代入方程得:1+m=0,解得:m=﹣1.故选A.【题目点拨】本题考查了一元二次方程的解.掌握一元二次方程的解的定义是解答本题的关键.二、填空题(每题4分,共24分)13、【解题分析】设出树高,利用所给角的正切值分别表示出两次影子的长,然后作差建立方程即可.解:如图所示,在RtABC中,tan∠ACB=,∴BC=,同理:BD=,∵两次测量的影长相差8米,∴=8,∴x=4,故答案为4.“点睛”本题考查了平行投影的应用,太阳光线下物体影子的长短不仅与物体有关,而且与时间有关,不同时间随着光线方向的变化,影子的方向也在变化,解此类题,一定要看清方向.解题关键是根据三角函数的几何意义得出各线段的比例关系,从而得出答案.14、【分析】利用相似三角形对应高的比等于相似比,列出方程即可解答.【题目详解】∴△PAB∽△PCD,∴AB:CD=P到AB的距离:点P到CD的距离,∴2:5=P到AB的距离:3,∴P到AB的距离为m,故答案为.【题目点拨】本题主要考查了相似三角形的应用,掌握相似三角形的应用是解题的关键.15、【分析】过点P1作P1E⊥x轴于点E,过点P2作P2F⊥x轴于点F,过点P3作P3G⊥x轴于点G,根据△P1OA1,△P2A1A2,△P3A2A3都是等腰直角三角形,可求出P1,P2,P3的坐标,从而总结出一般规律得出点Pn的坐标.【题目详解】解:过点P1作P1E⊥x轴于点E,过点P2作P2F⊥x轴于点F,过点P3作P3G⊥x轴于点G,∵△P1OA1是等腰直角三角形,∴P1E=OE=A1E=OA1,设点P1的坐标为(a,a),(a>0),将点P1(a,a)代入,可得a=1,故点P1的坐标为(1,1),则OA1=2,设点P2的坐标为(b+2,b),将点P2(b+2,b)代入,可得b=,故点P2的坐标为(,),则A1F=A2F=,OA2=OA1+A1A2=,设点P3的坐标为(c+,c),将点P3(c+,c)代入,可得c=,故点P3的坐标为(,),综上可得:P1的坐标为(1,1),P2的坐标为(,),P3的坐标为(,),总结规律可得:Pn坐标为;故答案为:.【题目点拨】本题考查了反比例函数的综合,根据等腰三角形的性质结合反比例函数解析式求出P1,P2,P3的坐标,从而总结出一般规律是解题的关键.16、-2或1.【解题分析】将x=-3代入原方程,得9-3m+m2-19=0,m2-3m-10=0,(m-1)(m+2)=0,m=-2或1.故答案为-2或1.点睛:已知方程的一个实数根,要求方程中的未知参数,把根代入方程即可.17、【分析】根据题意,由AAS证明△AEH≌△BFE,则BE=AH,根据相似比为,令EH=,AB=,设AE=,AH=,在直角三角形AEH中,利用勾股定理,即可求出的值,即可得到答案.【题目详解】解:在正方形EFGH与正方形ABCD中,∠A=∠B=90°,EF=EH,∠FEH=90°,∴∠AEH+∠AHE=90°,∠BEF+∠AEH=90°,∴∠AHE=∠BEF,∴△AEH≌△BFE(AAS),∴BE=AH,∵,令EH=,AB=,在直角三角形AEH中,设AE=,AH=AB-AE=,由勾股定理,得,即,解得:或,∵,∴,∴,∴;故答案为:.【题目点拨】本题考查了相似四边形的性质,正方形的性质,全等三角形的判定和性质,勾股定理,解题的关键是利用勾股定理求出AE和BE的长度.18、10%.【分析】1016年的水果产量=1014年的水果产量×(1+年平均增长率)1,把相关数值代入即可.【题目详解】根据题意,得

100(1+x)1=144,解这个方程,得x1=0.1,x1=-1.1.经检验x1=-1.1不符合题意,舍去.故答案为10%.【题目点拨】此题考查列一元二次方程;得到1016年水果产量的等量关系是解决本题的关键.三、解答题(共78分)19、50°【分析】根据平行四边形的性质求出CD=CE,得到AB=BE,所以根据,得到的度数【题目详解】证明:四边形是平行四边形是的角平分线四边形是平行四边形【题目点拨】本题考查平行四边形的性质,由角平分线得到相等的角,再利用平行四边形的性质和等角对等边的性质求解,得出AB=BE是解决问题的关键.20、(1)详见解析;(2)99或2.【解题分析】(1)首先由题意可得a+c=b,将欢喜数展开,因为要证明“欢喜数”能被99整除,所以将展开式中100a拆成99a+a,这样展开式中出现了a+c,将a+c用b替代,整理出最终结果即可;(2)首先设出两个欢喜数m、n,表示出F(m)、F(n)代入F(m)﹣F(n)=3中,将式子变形分析得出最终结果即可.【题目详解】(1)证明:∵为欢喜数,∴a+c=b.∵=100a+10b+c=99a+10b+a+c=99a+11b,b能被9整除,∴11b能被99整除,99a能被99整除,∴“欢喜数”能被99整除;(2)设m=,n=(且a1>a2),∵F(m)﹣F(n)=a1•c1﹣a2•c2=a1•(b﹣a1)﹣a2(b﹣a2)=(a1﹣a2)(b﹣a1﹣a2)=3,a1、a2、b均为整数,∴a1﹣a2=1或a1﹣a2=3.∵m﹣n=100(a1﹣a2)﹣(a1﹣a2)=99(a1﹣a2),∴m﹣n=99或m﹣n=2.∴若F(m)﹣F(n)=3,则m﹣n的值为99或2.【题目点拨】做此类阅读理解类题目首先要充分理解题目,会运用因式分解将式子变形.21、(1)60°(2)见解析【分析】(1)根据“同弧所对的圆周角相等”可以得到∠ADC=∠B=60°.(2)欲证明AE是⊙O的切线,只需证明BA⊥AE即可.【题目详解】解:(1)∵∠B与∠ADC都是弧AC所对的圆周角,∠B=60°,∴∠ADC=∠B=60°(2)证明:∵AB是⊙O的直径,∴∠ACB=90°∵∠B=60°,∴∠BAC=30°又∵∠EAC=60°,∴∠BAE=∠BAC+∠EAC=30°+60°=90°,即BA⊥AE.又∵AB是⊙O的直径,∴AE是⊙O的切线.22、【分析】在Rt△DEB和Rt△ACP中利用锐角三角函数来求出DE、AP的长,根据题意可知CE=BP,从而求出AB.【题目详解】解:如图,延长交过点平行于的直线于点,在中,在中,.则..答:的长度为.【题目点拨】本题考查的是利用锐角三角函数值求线段长.23、(1)99.5(2)3.9【分析】(1)作于点,由可得答案;(2)作于点,先根据求得的长度,再根据可得答案【题目详解】(1)如图1,过点E作于点,由题意知、,∴,则单车车座到地面的高度为;(2)如图2所示,过点作

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论