基于FPGA的可调FIR滤波器在实际通信系统中的实现方法设计_第1页
基于FPGA的可调FIR滤波器在实际通信系统中的实现方法设计_第2页
基于FPGA的可调FIR滤波器在实际通信系统中的实现方法设计_第3页
基于FPGA的可调FIR滤波器在实际通信系统中的实现方法设计_第4页
基于FPGA的可调FIR滤波器在实际通信系统中的实现方法设计_第5页
已阅读5页,还剩1页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

基于FPGA的可调FIR滤波器在实际通信系统中的实现方法设计基于灵活自适应的空口波形技术FOFDM(FilteredOFDM)是现代通信技术的研究热点,设计并实现可调FIR滤波器是实现该技术的核心工作之一。本文设计的基于FPGA的可调节FIR滤波器系数的自适应调整是通过控制算法对信道中的信号进行快速检测,然后将结果和滤波器的输出结果进行差值计算进行反馈调节。利用QuartusII和DSPBuilder设计基于FPGA的16阶系数可调FIR滤波器,给出核心模块的设计电路图和仿真结果。仿真结果表明:基于灵活自适应空口波形技术可以在FPGA上实现,而且由于FPGA具有天然的并行性,实际的通信系统中可以采用并发模式进行,达到提高信号传送速率的目的。0引言4G移动通信方兴未艾,业界对于5G移动通信技术的讨论已经如火如荼。作为移动通信领域“皇冠”上的一颗明珠,基于灵活自适应的空口波形技术和成倍提升频谱效率的多址技术SCMA(SparseCodeMultipleAccess)成为业内人士关注的焦点,其中,优化频带资源的利用率是FOFDM的核心。人们在研究算法优化的同时,也在关注算法的硬件实现。FPGA(FieldProgrammableGateArray)在能耗、成本、运算速度等方面具有得天独厚的优势,已经被广泛应用于各种数字信号处理和数字通信领域。本文重点研究FOFDM核心技术之一的可调FIR滤波器,设计并实现基于FPGA的可调节FIR滤波器。近年来,基于FPGA的数字滤波器研究已经取得了很多成果。然而,从现有的文献来看,并没有可供参考的用于基于自适应的空口波形技术的方法。本文第1节为核心模块设计,第2节为MATLAB仿真结果和系统仿真结果,第3节给出了基本结论和下一步研究目标。1基于FPGA的可调FIR滤波器设计该设计总体思路是:利用输入波形的各项参数,借助MATLAB中的FDAtool工具计算出FIR滤波器所需参数,存入RAM。滤波器核心模块读取参数信息,调节滤波器的截止频率等参数,调节该模块的功能。利用DSP_Builder开发核心滤波器模块的流程示意图如图1所示。最基本的FIR滤波器的系统函数为:可以用卷积表示为:y(n)=x(n)*h(n)(2)例如,一个典型的直接型4阶FIR滤波器,其表达式[11]可写为式(3):h(n)=h(0)x(n)+h(1)x(n-1)+h(2)x(n-2)+h(3)x(n-3)(3)在图2中,总共存在3个延时单元、4个乘法器和一个4输入的加法器。如果使用普通的数字信号处理器来实现这个4阶FIR滤波器,只能用串行的方式顺序地执行延时、乘、加操作。这必须用到多个指令周期,而无法在一个指令周期内完成。但是如果采用FPGA来实现,就可以利用FPGA指令可以并行的优点,在一个指令周期内得到结果。根据公式(3)和图2,可以在Simulink中用DSP_Builder里的相关器件画出一个图3所示的4阶FIR滤波器模型。图3中“Delay”为延时单元,“Product”为乘法器单元,“ParallelAdderSubtractor”为加法器单元,“Input”与“Output”分别为输入输出。(1)设计4阶FIR滤波器子系统新建一个文件,将子系统模块(Subsystem)放入文件中,双击打开子系统模块,将上面已经设计好的4阶FIR滤波器放进去,并对端口进行修改。修改后的Subsystem模块有5个输入和2个输出,“input”与“output”都修改为“Altbus”(因为它们不再作为主输入端口,而是作为子系统的传输端口)。(2)设计16阶FIR滤波器4阶子系统完成后,按照图4搭建一个16阶的FIR滤波器。其中Constant模块的初始值为5,需要另外计算,下文讲解如何计算Constant值。(3)计算Constant的值Constant的值就相当于h(n),是决定FIR滤波器具体性能的重要参数,该值为滤波器要调节的核心参数,它是通过滤波器的输出和输入信号的差值得到的。(4)导出参数点击左上角的File,单击Export,跳出Export界面,点击下方的Export按钮,可以将16个参数导出到MATLAB的主窗口。(5)将参数填入FIR滤波器的模型中在MATLAB仿真阶段,该参数可以手动输入到FIR滤波器Constant模块中,这样便完成了一个16阶低通FIR滤波器的设计。在系统设计阶段,步骤(4)计算结果会暂存在定制的RAM模块中。2设计验证2.1核心模块仿真为了验证设计的16阶FIR滤波器正确与否,需要进行仿真。为此,给滤波器的输入端加上一个混合信号,混合信号包含一个40Hz的高频信号和一个0.013Hz的低频信号,两个信号由Add模块相叠加,再分别加上示波器模块“Scope”来显示波形结果。FDAtool设置就和上文所述相同,并将所得数据填入Constant模块中,仿真时间设为500s。图5的上方为40Hz的波形,下方为0.013Hz的波形。图6的上方为输入的混合信号波形,下方为滤波器输出波形。将两幅图比较可以明显看出,高频信号40Hz的波形被滤除,滤波器输出的是低频的0.013Hz的信号。2.2系统仿真(1)将将mdl文件编译生成VHDL语言;(2)计算输入信号和滤波器输出的差值,将该值存入RAM;(3)读入RAM数据,逐渐确定滤波器截止频率;(4)仿真。为了验证所设计的可调FIR滤波器的正确性,设计了基于上述模块的低通滤波器进行波形的仿真。两个正弦波叠加形成输入信号,一个25kHz信号人为标记为噪声信号,另一个4kHz作为目标信号,程序调节滤波器的截止频率到4.5kHz。仿真结果如图7所示。由图中可知,该滤波器滤除了高于截止频率的信号部分,保留了低于截止频率的信号部分,因此滤波器功能正确。调节输入信号和截止频率后,结果也能达到如图7所示的效果。3结论本文FPGA设计了一种可调F

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论