版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建永安市2024届八上数学期末检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.已知:一次函数的图像经过点A(,1)和点B(,-3)且<,则它的图像大致是().A. B. C. D.2.已知某多边形的内角和比该多边形外角和的2倍多,则该多边形的边数是()A.6 B.7 C.8 D.93.在下列黑体大写英文字母中,不是轴对称图形的是()A. B. C. D.4.如果点(m﹣1,﹣1)与点(5,﹣1)关于y轴对称,则m=()A.4 B.﹣4 C.5 D.﹣55.如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为A. B.3 C.1 D.6.在平面直角坐标系中,将点P(1,4)向左平移3个单位长度得到点Q,则点Q所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.已知+=0,则的值是()A.-6 B. C.9 D.-88.如图所示的标志中,是轴对称图形的有()A.1个 B.2个 C.3个 D.4个9.下面有4个汽车标志图案,其中是中心对称图形的是()A. B.C. D.10.若直线经过第一、二、四象限,则,的取值范围是()A., B., C., D.,二、填空题(每小题3分,共24分)11.在一次知识竞赛中,有25道抢答题,答对一题得4分,答错或不答每题扣2分,成绩不低于60分就可获奖.那么获奖至少要答对___________道题.12.·(-)的值为_______13.如图,直线,平分,交于点,,那么的度数为________.14.若代数式是一个完全平方式,则常数的值为__________.15.已知:,,则__________.16.如图,在中,为边的中点,于点,于点,且.若,则的大小为__________度.17.已知实数、在数轴上的位置如图所示,化简=_____________18.用反证法证明命题“在一个三角形中至少有一个内角小于或等于60°”时,应假设________.三、解答题(共66分)19.(10分)已知:两个实数满足.(1)求的值;(2)求的值.20.(6分)如图,在▱ABCD中,E、F分别是BC、AD边上的点,且∠1=∠1.求证:四边形AECF是平行四边形.21.(6分)证明:如果两个三角形有两边和其中一边上的高分别对应相等,那么这两个三角形全等.22.(8分)中国机器人创意大赛于2014年7月15日在哈尔滨开幕.如图是一参赛队员设计的机器人比赛时行走的路径,机器人从A处先往东走4m,又往北走1.5m,遇到障碍后又往西走2m,再转向北走4.5m处往东一拐,仅走0.5m就到达了B.问机器人从点A到点B之间的距离是多少?23.(8分)设,则的最小值为______.24.(8分)(1)在等边三角形中,①如图①,,分别是边,上的点,且,与交于点,则的度数是___________度;②如图②,,分别是边,延长线上的点,且,与的延长线交于点,此时的度数是____________度;(2)如图③,在中,,是锐角,点是边的垂直平分线与的交点,点,分别在,的延长线上,且,与的延长线交于点,若,求的大小(用含法的代数式表示).25.(10分)如图,已知在中,,,,是上的一点,,点从点出发沿射线方向以每秒个单位的速度向右运动.设点的运动时间为.连结.(1)当秒时,求的长度(结果保留根号);(2)当为等腰三角形时,求的值;(3)过点做于点.在点的运动过程中,当为何值时,能使?26.(10分)如图,在四边形中,,,,分别以点为圆心,大于的长为半径作弧,两弧交于点,作射线交于点,交于点.若点是的中点.(1)求证:;(2)求的长.
参考答案一、选择题(每小题3分,共30分)1、B【分析】结合题意,得,;结合<,根据不等式的性质,得;再结合与y轴的交点,即可得到答案.【题目详解】∵一次函数的图像经过点A(,1)和点B(,-3)∴,∴,∵<∴∴∴选项A和C错误当时,∴选项D错误故选:B.【题目点拨】本题考查了一次函数、不等式的知识;解题的关键是熟练掌握一次函数图像和不等式的性质,从而完成求解.2、B【分析】多边形的内角和比外角和的2倍多180°,而多边形的外角和是360°,则内角和是900度,n边形的内角和可以表示成(n-2)•180°,设这个多边形的边数是n,就得到方程,从而求出边数.【题目详解】解:根据题意,得
(n-2)•180=360×2+180,
解得:n=1.
则该多边形的边数是1.
故选:B.【题目点拨】此题主要考查了多边形内角和定理和外角和定理,只要结合多边形的内角和公式寻求等量关系,构建方程即可求解.3、C【分析】根据轴对称图形的概念对各个大写字母判断即可得解.【题目详解】A.“E”是轴对称图形,故本选项不合题意;B.“M”是轴对称图形,故本选项不合题意;C.“N”不是轴对称图形,故本选项符合题意;D.“H”是轴对称图形,故本选项不合题意.故选:C.【题目点拨】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.4、B【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”列出方程求解即可.【题目详解】解:∵点(m﹣1,﹣1)与点(5,﹣1)关于y轴对称,∴m﹣1=﹣5,解得m=﹣1.故选:B.【题目点拨】本题考查了关于y轴对称的点的坐标特征,掌握关于y轴对称的点的坐标特征是横坐标互为相反数是解题的关键.5、A【分析】首先利用勾股定理计算出AC的长,再根据折叠可得△DEC≌△D′EC,设ED=x,则D′E=x,AD′=AC﹣CD′=2,AE=4﹣x,再根据勾股定理可得方程22+x2=(4﹣x)2,再解方程即可【题目详解】∵AB=3,AD=4,∴DC=3∴根据勾股定理得AC=5根据折叠可得:△DEC≌△D′EC,∴D′C=DC=3,DE=D′E设ED=x,则D′E=x,AD′=AC﹣CD′=2,AE=4﹣x,在Rt△AED′中:(AD′)2+(ED′)2=AE2,即22+x2=(4﹣x)2,解得:x=故选A.6、B【分析】向左平移,纵坐标不变,横坐标减3即可.【题目详解】解:平移后点Q的坐标为(1﹣3,4),即Q(﹣2,4),∴点Q所在的象限是第二象限,故选择:B.【题目点拨】本题考查点在象限问题,关键上掌握平移特征,左右平移纵坐标不变,横坐标减去或加上平移距离.7、B【分析】根据非负数的性质可得x、y的值,代入即可得出答案.【题目详解】解:∵+=0,∴x+2=0,y-3=0,∴x=-2,y=3,∴yx=3-2=.故选:B.【题目点拨】本题考查了非负数的性质——偶次幂和二次根式,以及负指数幂,根据非负数的性质得出x、y的值是解决此题的关键.8、C【解题分析】根据轴对称的定义逐一判断即可.【题目详解】是轴对称图形,故符合题意;是轴对称图形,故符合题意;是轴对称图形,故符合题意;不是轴对称图形,故不符合题意,共有3个轴对称图形故选C.【题目点拨】此题考查的是轴对称图形的识别,掌握轴对称图形的定义是解决此题的关键.9、D【分析】根据中心对称图形的概念:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,由此结合各图形的特点求解.【题目详解】解:根据中心对称的定义可得:A、B、C都不符合中心对称的定义.D选项是中心对称.故选:D.【题目点拨】本题考查中心对称的定义,属于基础题,注意掌握基本概念.10、C【分析】根据一次函数图象在坐标平面内的位置关系先确定k,b的取值范围,从而求解.【题目详解】∵一次函数的图象经过第一、二、四象限,当k>0时,直线必经过一、三象限;当k<0时,直线必经过二、四象限;∴k<0当b>0时,直线必经过一、二象限;当b<0时,直线必经过三、四象限;∴b>0故选C.【题目点拨】本题考查一次函数图象与系数的关系,掌握一次函数的系数与图象的关系是解题关键.二、填空题(每小题3分,共24分)11、1【分析】设答对x道题可以获奖,则答错或不答(25-x)道题,根据成绩=4×答对的题目数-2×答错或不答的题目数,即可得出关于x的一元一次不等式,解之取其中的最小整数值即可得出结论.【题目详解】解:设答对x道题可以获奖,则答错或不答(25-x)道题,依题意,得:4x-2(25-x)≥60,解得:x≥,又x为整数,故x的最小为1,故答案为:1.【题目点拨】题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.12、-6xy【解题分析】试题分析:原式===-6xy.故答案为-6xy.13、120°【分析】由,平分,得∠CBD=∠ABD=30°,进而即可得到答案.【题目详解】∵,∴∠ABD=,∵平分,∴∠CBD=∠ABD=30°,∴=180°-30°-30°=120°.故答案是:120°.【题目点拨】本题主要考查平行线的性质与角平分线的定义以及三角形内角和定理,掌握“双平等腰”模型,是解题的关键.14、±12【分析】利用完全平方公式的结构特征判断即可确定出k的值.【题目详解】∵是一个完全平方式,∴−k=±12,解得:k=±12故填:±12.【题目点拨】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.15、【分析】将转化为,再把转化为,则问题可解【题目详解】解:∵【题目点拨】本题考查了同底数幂的除法和幂的乘方的逆运算,解答关键是将不同底数的幂运算转化成同底数幂进行计算.16、60【分析】根据题意,点D是BC的中点,,可证明Rt△BDE≌Rt△CDF,可得∠B=∠C=60°,利用三角形内角和180°,计算即可得.【题目详解】∵为边的中点,于点,于点,∴BD=CD,∠DEB=∠DFC=90°,又,∴Rt△BDE≌Rt△CDF(HL),∴,∴∠B=∠C=60°,∠A=180°-60°-60°=60°,故答案为:60°.【题目点拨】考查了垂直的定义,直角三角形全等的证明方法(HL),三角形内角和定理,熟记几何图形的定理和性质是解题的关键.17、【分析】先根据数轴的定义可得,从而可得,再化简绝对值和二次根式,然后计算整式的加减即可得.【题目详解】由数轴的定义得:,则,因此,,,故答案为:.【题目点拨】本题考查了数轴、绝对值、二次根式、整式的加减,熟练掌握数轴的定义是解题关键.18、在一个三角形中三个角都大于60°【分析】根据反证法的第一步是假设结论不成立进行解答即可.【题目详解】由反证法的一般步骤,第一步是假设命题的结论不成立,所以应假设在一个三角形中三个角都大于60°,故答案为:在一个三角形中三个角都大于60°.【题目点拨】本题考查反证法,反证法的一般步骤是:①假设命题的结论不成立;②从这个假设出发,经过推理论证,得出矛盾;③由矛盾判定假设不正确,从而肯定原命题的结论正确.三、解答题(共66分)19、(1)7;(2)-1.【分析】(1)利用完全平方和公式易求解;(2)先通分再利用完全平方和公式即可.【题目详解】解:(1)(2)【题目点拨】本题主要考查了完全平方公式,灵活利用完全平方公式进行配方是解题的关键.20、详见解析【解题分析】由条件可证明AE∥FC,结合平行四边形的性质可证明四边形AECF是平行四边形.【题目详解】证明:∵四边形ABCD为平行四边形,∴AD∥BC,∴∠1=∠EAF,∵∠1=∠1,∴∠EAF=∠1,∴AE∥CF,∴四边形AECF是平行四边形.【题目点拨】本题主要考查平行四边形的性质和判定,利用平行四边形的性质证得AE∥CF是解题的关键.21、见解析【分析】由HL证明Rt△ABH≌Rt△DEK得∠B=∠E,再用边角边证明△ABC≌△DEF.【题目详解】已知:如图所示,在△ABC和△DEF中,AB=DE,BC=EF,AH⊥BC,DK⊥EF,且AH=DK.求证:△ABC≌△DEF,证明:∵AH⊥BC,DK⊥EF,∴∠AHB=∠DKE=90°,在Rt△ABH和Rt△DEK中,,∴Rt△ABH≌Rt△DEK(HL),∠B=∠E,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS)【题目点拨】本题综合考查了全等三角形的判定与性质和命题的证明方法,重点掌握全等三角形的判定与性质,难点是将命题用几何语言规范书写成几何证明格式.22、【解题分析】试题分析:过点B作BCAD于C,可以计算出AC、BC的长度,在直角△ABC中根据勾股定理即可计算AB.试题解析:过点B作BCAD于C,所以AC=3﹣2+4.5=2.5m,BC=3.5+4.5=6m,在直角△ABC中,AB为斜边,则m,答:机器人从点A到点B之间的距离是m.考点:勾股定理.23、【分析】把M化成完全平方的形式,再示出其最小值即可.【题目详解】当且仅当,表达式取得最小值.故答案为:.【题目点拨】考查了完全平方公式,解题关键是把整式化成完全平方的形式.24、(1)60;(2)60;(3)【分析】(1)①只要证明△ACE≌△CBD,可得∠ACE=∠CBD,推出∠BFE=∠CBD+∠BCF=∠ACE+∠BCF=∠BCA=60°;②只要证明△ACE≌△CBD,可得∠ACE=∠CBD=∠DCF,即可推出∠BFE=∠D+∠DCF=∠D+∠CBD=∠BCA=60°;(2)只要证明△AEC≌△CDB,可得∠E=∠D,即可推出∠BFE=∠D+∠DCF=∠E+∠ECA=∠OAC=α.【题目详解】解:(1)①如图①中,∵△ABC是等边三角形,∴AC=CB,∠A=∠BCD=60°,∵AE=CD,∴△ACE≌△CBD,∴∠ACE=∠CBD,∴∠BFE=∠CBD+∠BCF=∠ACE+∠BCF=∠BCA=60°.故答案为60;②如图②,∵△ABC是等边三角形,∴AC=CB,∠A=∠BCD=60°,∴∠CAE=∠BCD=′120°∵AE=CD,∴△ACE≌△CBD,∴∠ACE=∠CBD=∠DCF,∴∠BFE=∠D+∠DCF=∠D+∠CBD=∠BCA=60°.故答案为60;(2)如图③中,图③点是边的垂直平分线与的交点,,,,,,,.【题目点拨】本题考查全等三角形的判定和性质和等腰三角形的性质和判定以及等边三角形的性质、线段的垂直平分线的性质等知识,解题的关键是正确寻找全等三角形解决问题.25、(1)2;(2)4或16或2;(3)2或1.【分析】(1)根据题意得BP=2t,从而求出PC的长,然后利用勾股定理即可求出AP的长;(2)先利用勾股定理求出AB的长,然后根据等腰三角形腰的情况分类讨论,分别列出方程即可求出t的值;(3)根据点P的位置分类讨论,分别画出对应的图形,根据勾股定理求出AE,分别利用角平分线的性质和判定求出AP,利用勾股定理列出方程,即可求出t的值.【题目详解】(1)根据题意,得BP=2t,∴PC=16-2t=16-2×3=10,∵AC=8,在Rt△APC中,根据勾股定理,得AP===2.答:AP的长为2.(2)在Rt△ABC中,AC=8,BC=16,根据勾股定理,得AB===8若BA=BP,则2t=8,解得:t=4;若AB=AP,∴此时AC垂直平分BP则BP=32,2t=32,解得:t=16;若PA=PB=2t,CP=16-2t∵PA2=CP2+AC2则(2t)2=(16-2t)2+82,解得:t=2.答:当△ABP为等腰三角形时,t的值为4、16、2.(3)若P在C点的左侧,连接PDCP=16-2t∵DE=DC=3,AC=8,,DC⊥PC∴PD平分∠EPC,AD=AC-DC=2根据勾股定理可得AE=,∴∠EPD=∠CPD∴∠EDP=90°-∠EPD=90
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年高职混凝土结构工程技术(混凝土强度控制)试题及答案
- 2025年大学艺术史论(艺术史研究)试题及答案
- 2025年大学大一(机械电子工程)数控技术综合测试题及答案
- 2025年中职药品食品检验(食品感官检验)试题及答案
- 2026年游戏运营(用户维护)试题及答案
- 2025年中职大气污染化学和物理(大气环境监测)试题及答案
- 2025年大学烹饪(烹饪学研究)试题及答案
- 2026年快餐食品加工机维修(加工机调试技术)试题及答案
- 2025年大学大四(材料成型及控制工程)材料成型综合实训阶段测试题及答案
- 2025年大学建筑工程造价(工程预算编制)试题及答案
- 卵巢过度刺激征课件
- 汉服行业市场壁垒分析报告
- 2026华润燃气校园招聘(公共基础知识)综合能力测试题附答案解析
- 第21章 反比例函数(单元测试·综合卷)(含答案)-沪科版(2024)九上
- 临床试验风险管理计划(RMP)编制规范
- 2025年项目总监年底工作总结及2026年度工作计划
- 农业科技园区建设与运营方案
- 招投标业务流程及合同管理指南
- 消防考试试题1000题及答案
- 年会安全知识培训课件
- 警务基础解脱技术
评论
0/150
提交评论