2024届山西省平遥县综合职业技术学校高二数学第一学期期末质量跟踪监视试题含解析_第1页
2024届山西省平遥县综合职业技术学校高二数学第一学期期末质量跟踪监视试题含解析_第2页
2024届山西省平遥县综合职业技术学校高二数学第一学期期末质量跟踪监视试题含解析_第3页
2024届山西省平遥县综合职业技术学校高二数学第一学期期末质量跟踪监视试题含解析_第4页
2024届山西省平遥县综合职业技术学校高二数学第一学期期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届山西省平遥县综合职业技术学校高二数学第一学期期末质量跟踪监视试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若双曲线(,)的一条渐近线经过点,则双曲线的离心率为()A. B.C. D.22.函数,则不等式的解集是()A. B.C. D.3.如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的表面积为()A. B.C.8 D.124.几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是A.440 B.330C.220 D.1105.圆的圆心坐标与半径分别是()A. B.C. D.6.直线与圆相交于点,点是坐标原点,若是正三角形,则实数的值为A.1 B.-1C. D.7.已知点F是双曲线的左焦点,点E是该双曲线的右顶点,过F作垂直于x轴的直线与双曲线交于G、H两点,若是锐角三角形,则该双曲线的离心率e的取值范围是()A. B.C. D.8.如图,平面四边形中,,,,为等边三角形,现将沿翻折,使点移动至点,且,则三棱锥的外接球的表面积为()A. B.C. D.9.已知椭圆方程为:,则其离心率为()A. B.C. D.10.已知向量,,且,则实数等于()A1 B.2C. D.11.等比数列的各项均为正数,且,则=()A.8 B.16C.32 D.6412.若数列满足,则()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知长轴长为,短轴长为的椭圆的面积为.现用随机模拟的方法来估计的近似值,先用计算机产生个数对,,其中,均为内的随机数,再由计算机统计发现其中满足条件的数对有个,由此可估计的近似值为______________14.若点为圆上的一个动点,则点到直线距离的最大值为________15.已知函数在处有极值.则=________16.已知等差数列是首项为的递增数列,若,,则满足条件的数列的一个通项公式为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆C:的长轴长为4,过C的一个焦点且与x轴垂直的直线被C截得的线段长为3(1)求C的方程;(2)若直线:与C交于A,B两点,线段AB的中垂线与C交于P,Q两点,且,求m的值18.(12分)已知二次函数,令,解得.(1)求二次函数的解析式;(2)当关于的不等式恒成立时,求实数的范围.19.(12分)设数列的前项和为,且.(1)求数列的通项公式;(2)记,数列的前项和为,求不等式的解集.20.(12分)已知圆,圆,动圆与圆外切,且与圆内切.(1)求动圆圆心的轨迹的方程,并说明轨迹是何种曲线;(2)设过点的直线与直线交于两点,且满足的面积是面积的一半,求的面积21.(12分)如图,已知圆锥SO底面圆的半径r=1,直径AB与直径CD垂直,母线SA与底面所成的角为.(1)求圆锥SO的侧面积;(2)若E为母线SA的中点,求二面角E-CD-B的大小.(结果用反三角函数值表示)22.(10分)已知椭圆C:的左、右焦点分别为F1、F2,上顶点为A,△AF1F2的周长为6,离心率等于.(1)求椭圆C的标准方程;(2)过点(4,0)的直线l交椭圆C于M、N两点,且OM⊥ON,求直线l的方程.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】先求出渐近线方程,进而将点代入直线方程得到a,b关系,进而求出离心率.【详解】由题意,双曲线的渐近线方程为:,而一条渐近线过点,则,.故选:A.2、A【解析】利用导数判断函数单调递增,然后进行求解.【详解】对函数进行求导:,因为,,所以,因为,所以f(x)是奇函数,所以在R上单调递增,又因为,所以的解集为.故选:A3、B【解析】首先确定几何体的空间结构特征,然后求解其表面积即可.【详解】由题意知,该几何体是一个由8个全等的正三角形围成的多面体,正三角形的边长为:,正三角形边上的一条高为:,所以一个正三角形的面积为:,所以多面体的表面积为:.故选:B4、A【解析】由题意得,数列如下:则该数列的前项和为,要使,有,此时,所以是第组等比数列的部分和,设,所以,则,此时,所以对应满足条件的最小整数,故选A.点睛:本题非常巧妙地将实际问题和数列融合在一起,首先需要读懂题目所表达的具体含义,以及观察所给定数列的特征,进而判断出该数列的通项和求和.另外,本题的难点在于数列里面套数列,第一个数列的和又作为下一个数列的通项,而且最后几项并不能放在一个数列中,需要进行判断.Ⅱ卷5、C【解析】将圆的一般方程化为标准方程,即可得答案.【详解】由题可知,圆的标准方程为,所以圆心为,半径为3,故选.6、C【解析】由题意得,直线被圆截得的弦长等于半径.圆的圆心坐标,设圆半径为,圆心到直线的距离为,则由条件得,整理得所以,解得.选C7、B【解析】根据是等腰三角形且为锐角三角形,得到,即,解得离心率范围.【详解】,当时,,,不妨取,,是等腰三角形且为锐角三角形,则,即,,即,,解得,故.故选:B.8、A【解析】将三棱锥补形为如图所示的三棱柱,则它们的外接球相同,由此易知外接球球心应在棱柱上下底面三角形的外心连线上,在中,计算半径即可.【详解】由,,可知平面将三棱锥补形为如图所示的三棱柱,则它们的外接球相同,由此易知外接球球心应在棱柱上下底面三角形的外心连线上,记的外心为,由为等边三角形,可得又,故在中,此即为外接球半径,从而外接球表面积为故选:A【点睛】本题考查了三棱锥外接球的表面积,考查了学生空间想象,逻辑推理,综合分析,数学运算的能力,属中档题.9、B【解析】根据椭圆的标准方程,确定,计算离心率即可.【详解】由知,,,,即,故选:B10、C【解析】利用空间向量垂直的坐标表示计算即可得解【详解】因向量,,且,则,解得,所以实数等于.故选:C11、B【解析】由等比数列的下标和性质即可求得答案.【详解】由题意,,所以.故选:B.12、C【解析】利用前项积与通项的关系可求得结果.【详解】由已知可得.故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由,,根据表示的数对对应的点在椭圆的内部,且在第一象限,求出满足条件的点的概率,再转化为几何概型的面积类型求解【详解】,,表示的数对对应的点在椭圆的内部,且在第一象限,其面积为,故,得故答案为:.【点睛】本题主要考查了几何型概率应用,解题关键是掌握几何型概率求法,考查了分析能力和计算能力,属于基础题.14、7【解析】根据给定条件求出圆C的圆心C到直线l的距离即可计算作答.【详解】圆的圆心,半径,点C到直线的距离,所以圆C上点P到直线l距离的最大值为.故答案为:715、4【解析】根据极值点概念求解【详解】,由题意得,,经检验满足题意故答案为:416、,答案不唯一【解析】由,,可得,进而解得,然后写出通项公式即可.【详解】设数列的公差为d,由题可得,因为,,所以有,解得,只要公差d满足即可,然后根据等差数列的通项公式写出即可,我们可以取,此时.故答案为:,答案不唯一.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)由题设可得且,求出,即可得椭圆方程.(2)联立直线l和椭圆C并整理为关于x的一元二次方程,由求出m的范围,再应用韦达定理、弦长公式求,进而可得线段AB的中垂线,同理联立曲线C求相交弦长,再由已知条件求m值,注意其范围.【小问1详解】由题意知,,则,令,可得,由题设有,则,所以C的方程为【小问2详解】联立方程得:,由,得设,,则,,所以,另一方面,,即线段AB的中点为,所以线段AB的中垂线方程为令,联立方程得:同理求法,可得:,即因此,解得,故18、(1);(2).【解析】(1)利用一元二次不等式的解集是,得到-3,2是方程的两个根,根据根与系数之间的关系,即可求,;(2)根据题意,得出不等式恒成立,则,解不等式即可求出实数的范围.详解】解:(1)由题可知,,解得:,则-3,2是方程的两个根,且,所以由根与系数之间的关系得,解得,所以二次函数的解析式为:;(2)由于不等式恒成立,即恒成立,则,解得:,所以实数的范围为.【点睛】本题考查由一元二次不等式的解集求函数解析式,以及不等式恒成立问题求参数范围,考查根与系数的关系和一元二次函数的图象和性质,考查化简运算能力19、(1)(2)【解析】(1)利用与的关系求解即可;(2)首先利用裂项求和得到,从而得到,再解不等式即可.【小问1详解】令,则,当时,,当时,也符合上式,即数列的通项公式为.【小问2详解】由(1)得,则,所以故可化为:,故,故不等式的解集为.20、(1)(2)或【解析】(1)设圆的半径为,圆的半径为,圆的半径为,由题意,,从而可得,由椭圆的定义即可求解;(2)由题意,直线的斜率存在且不为0,设,,联立直线与椭圆方程,利用韦达定理及点为线段的中点,可得,利用弦长公式求出及到直线AB的距离即可得的面积.【小问1详解】解:圆的圆心,半径,圆的圆心,半径,设圆的半径为,由题意,,所以,由椭圆的定义可知,动圆圆心的轨迹是以,为焦点,长轴长为的椭圆,则,所以,所以动圆圆心的轨迹的方程为;【小问2详解】解:由题意,直线的斜率存在且不为0,设,,由,可得,所以①,②,且,即,因为的面积是面积的一半,所以点为线段的中点,所以,即③,联立①②③可得,所以,因为到直线AB的距离,,所以,所以当时,,当时,.所以的面积为或.21、(1)(2)【解析】(1)先根据母线与底面的夹角求出圆锥的母线长,然后根据圆锥的侧面积公式即可(2)利用三角形的中位线性质,先求出二面角,然后利用二面角与二面角的互补关系即可求得【小问1详解】根据母线SA与底面所成的角为,且底面圆的半径可得:则圆锥的侧面积为:【小问2详解】如图所示,过点作底面的垂线交于,连接,则为的中位线则有:,,易知,则,又直径AB与直径CD垂直,则则有:为二面角可得:又二面角与二面角互为补角,则二面角的余弦值为故二面角大小为22、(1);(2)或.【解析】(1)由条件得,再结合,可求得椭圆方程;(2)由题意设直线l:x=my+4,设M(x1,y1),N(x2,y2),直线方程与椭圆方程联立方程组,消去,整理后利用根与系的关系可得,,再由OM⊥ON,可

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论