2024届浙江省诸暨市开放双语学校数学八年级第二学期期末达标测试试题含解析_第1页
2024届浙江省诸暨市开放双语学校数学八年级第二学期期末达标测试试题含解析_第2页
2024届浙江省诸暨市开放双语学校数学八年级第二学期期末达标测试试题含解析_第3页
2024届浙江省诸暨市开放双语学校数学八年级第二学期期末达标测试试题含解析_第4页
2024届浙江省诸暨市开放双语学校数学八年级第二学期期末达标测试试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届浙江省诸暨市开放双语学校数学八年级第二学期期末达标测试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.某种材料的厚度是0.0000034m,0.0000034这个数用科学记数法表示为()A.0.34×10-6 B.3.4×10-62.若x1、x2是x2+x﹣1=0方程的两个不相等的实数根,则x1+x2﹣x1x2的值为()A.+1 B.﹣2 C.﹣2 D.03.一元二次方程配方后可化为()A. B. C. D.4.点A(x1,y1),B(x2,y2)在反比例函数y=的图象上,当x1<0<x2时,y1>y2,则k的取值围是()A.k< B.k> C.k<2 D.k>25.如图,一个长方体铁块放置在圆柱形水槽容器内,向容器内按一定的速度均匀注水,60秒后将容器内注满.容器内水面的高度h(cm)与注水时间t(s)之间的函数关系图象大致是()A. B. C. D.6.下列方程中,一元二次方程的是()A.=0 B.(2x+1)(x﹣3)=1C.ax2+bx=0 D.3x2﹣2xy﹣5y2=07.若方程

+=

3有增根,则a的值为(

)A.1 B.2 C.3 D.08.如图,在▱ABCD中,∠ODA=90°,AC=10cm,BD=6cm,则BC的长为()A.4cm B.5cm C.6cm D.8cm9.若直线y=x+1与y=-2x+a的交点在第一象限,则a的取值可以是A.-1 B.0 C.1 D.210.把直线向下平移3个单位长度得到直线为()A. B. C. D.二、填空题(每小题3分,共24分)11._____.12.若分式在实数范围内有意义,则的取值范围是_____.13.随着海拔高度的升高,大气压强下降,空气中的含氧量也随之下降,即含氧量y(g/m3)与大气压强x(kPa)成正比例函数关系.当x=36(kPa)时,y=108(g/m3),请写出y与x的函数关系式.14.以1,1,为边长的三角形是___________三角形.15.已知矩形的长a=,宽b=,则这个矩形的面积是_____.16.有8个数的平均数是11,还有12个数的平均数是12,则这20个数的平均数是_________.17.如图,在矩形中,点为射线上一动点,将沿折叠,得到若恰好落在射线上,则的长为________.18.设x1,x2是一元二次方程x2﹣x﹣1=0的两根,则x1+x2+x1x2=_____.三、解答题(共66分)19.(10分)(某服装公司招工广告承诺:熟练工人每月工资至少3000元.每天工作8小时,一个月工作25天.月工资底薪800元,另加计件工资.加工1件A型服装计酬16元,加工1件B型服装计酬12元.在工作中发现一名熟练工加工1件A型服装和2件B型服装需4小时,加工3件A型服装和1件B型服装需7小时.(工人月工资底薪+计件工资)(1)一名熟练工加工1件A型服装和1件B型服装各需要多少小时?(2)一段时间后,公司规定:“每名工人每月必须加工A,B两种型号的服装,且加工A型服装数量不少于B型服装的一半”.设一名熟练工人每月加工A型服装a件,工资总额为W元.请你运用所学知识判断该公司在执行规定后是否违背了广告承诺?20.(6分)如图,在四边形ABCD中,AD⊥BD,BC=4,CD=3,AB=13,AD=12,求证:∠C=90°.21.(6分)如图,矩形ABCD的边BC在x轴上,点A(a,4)和D分别在反比函数y=-12x和y=mx(m>(1)当AB=BC时,求m的值。(2)连结OA,OD.当OD平方∠AOC时,求△AOD的周长.22.(8分)计算:23.(8分)某汽车销售公司经销某品牌A款汽车,随着汽车的普及,其价格也在不断下降.今年5月份A款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为100万元,今年销售额只有90万元.(1)今年5月份A款汽车每辆售价多少万元?(2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案?(3)如果B款汽车每辆售价为8万元,为打开B款汽车的销路,公司决定每售出一辆B款汽车,返还顾客现金a万元,要使(2)中所有的方案获利相同,a值应是多少?此时,哪种方案对公司更有利?24.(8分)某商品的进价为每件40元,售价每件不低于60元且不高于80元,当售价为每件60元时,每个月可卖出100件;经调查发现,每件商品每上涨1元,每月少卖出2件.设每件商品的售价为x元(x为正整数).(1)求每个月的销售利润;(用含有x代数式表示)(2)若每个月的利润为2250元,定价应为多少元?25.(10分)如图,在平面直角坐标系中,已知点和点.(1)求直线所对应的函数表达式;(2)设直线与直线相交于点,求的面积.26.(10分)关于x的一元二次方程.(1).求证:方程总有两个实数根;(2).若方程的两个实数根都是正整数,求m的最小值.

参考答案一、选择题(每小题3分,共30分)1、B【解题分析】

绝对值小于1的负数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【题目详解】解:0.0000034=3.4×10−1.故选:B.【题目点拨】此题主要考查了用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.2、D【解题分析】

根据韦达定理知x1+x2=﹣1、x1x2=﹣1,代入计算可得.【题目详解】解:∵x1、x2是x2+x﹣1=0方程的两个不相等的实数根,∴x1+x2=﹣1、x1x2=﹣1,∴原式=﹣1﹣(﹣1)=0,故选:D.【题目点拨】本题主要考查根与系数的关系,解题的关键是掌握韦达定理和整体代入思想的运用.3、D【解题分析】

配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.【题目详解】解:故选:D.【题目点拨】本题考查一元二次方程的配方法,解题的关键是熟练运用配方法,本题属于基础题型.4、B【解题分析】

根据当x1<0<x2时,y1>y2可得双曲线在第二,四象限,1-2k<0,列出方程求解即可.【题目详解】解:∵A(x1,y1),B(x2,y2)在反比例函数y=的图象上,又∵x1<0<x2时,y1>y2,∴函数图象在二四象限,∴1﹣2k<0,∴k>,故选B.【题目点拨】本题考查了反比例函数图象上点的坐标特征,得出1-2k<0是关键,较为简单.5、D【解题分析】

根据图像分析不同时间段的水面上升速度,进而可得出答案.【题目详解】已知一个长方体铁块放置在圆柱形水槽容器内,向容器内按一定的速度均匀注水,60秒后将容器内注满.因为长方体是均匀的,所以初期的图像应是直线,当水越过长方体后,注水需填充的体积变大,因此此时的图像也是直线,但斜率小于初期,综上所述答案选D.【题目点拨】能够根据条件分析不同时间段的图像是什么形状是解答本题的关键.6、B【解题分析】试题分析:根据一元二次方程的定义:A、x2+=0是分式方程;B、(2x﹣1)(x+2)=1,即2x2+3x﹣3=0是一元二次方程;C、ax2+bx=0中a=0时,不是一元二次方程;D、3x2﹣2xy﹣5y2=0是二元二次方程;故选B.考点:一元二次方程的定义7、A【解题分析】

增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.把增根代入化为整式方程的方程即可求出a的值.【题目详解】方程两边都乘(x-2),得

x-1-a=3(x-2)

∵原方程增根为x=2,

∴把x=2代入整式方程,得a=1,

故选:A.【题目点拨】考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.8、A【解题分析】

利用平行四边形的性质得出AO=CO,DO=BO,再利用勾股定理得出AD的长进而得出答案.【题目详解】∵四边形ABCD是平行四边形,∴DO=BO,AO=CO,∵∠ODA=90°,AC=10cm,BD=6cm,∴DO=3cm,AO=5cm,则AD=BC==4(cm)故选;A.【题目点拨】此题考查平行四边形的性质,解题关键在于利用勾股定理进行求解.9、D【解题分析】

联立两直线解析式,解关于x、y的二元一次方程组,然后根据交点在第一象限,横坐标是正数,纵坐标是正数,列出不等式组求解即可.【题目详解】解:联立,解得:,∵交点在第一象限,∴,解得:a>1.故选D.【题目点拨】本题考查了两直线相交的问题,第一象限内点的横坐标是正数,纵坐标是正数,以及一元一次不等式组的解法,把a看作常数表示出x、y是解题的关键.10、D【解题分析】

根据直线平移的性质,即可得解.【题目详解】根据题意,得故答案为D.【题目点拨】此题主要考查一次函数的平移,熟练掌握,即可解题.二、填空题(每小题3分,共24分)11、【解题分析】

原式化为最简二次根式,合并即可得到结果.【题目详解】解:原式=+2=3.故答案为3【题目点拨】此题考查了二次根式的加减法,熟练掌握运算法则是解本题的关键.12、x≠1【解题分析】【分析】根据分式有意义的条件进行求解即可得答案.【题目详解】由题意得:1-x≠0,解得:x≠1,故答案为x≠1.【题目点拨】本题考查了分式有意义的条件,熟知分母不为0时分式有意义是解题的关键.13、y=3x.【解题分析】试题分析:设y=kx,然后根据题意列出关系式.依题意有:x=36(kPa)时,y=108(g/m3),∴k=3,故函数关系式为y=3x.考点:根据实际问题列一次函数关系式.14、等腰直角【解题分析】

根据等腰三角形和直角三角形的性质以及判定定理进行判断即可.【题目详解】∵∴是等腰三角形∵∴是直角三角形∴该三角形是等腰直角三角形故答案为:等腰直角.【题目点拨】本题考查了等腰三角形和直角三角形的证明问题,掌握等腰三角形和直角三角形的性质以及判定定理是解题的关键.15、1【解题分析】

根据矩形的面积公式列出算式,根据二次根式的乘法法则计算,得到答案.【题目详解】矩形的面积=ab=×=×1××3=1,故答案为:1.【题目点拨】本题考查的是二次根式的应用,掌握二次根式的乘法法则是解题的关键.16、11.1【解题分析】

根据平均数的公式求解即可,8个数的和加12个数的和除以20即可.【题目详解】解:根据平均数的求法:共8+12=20个数,这些数之和为8×11+12×12=232,故这些数的平均数是=11.1.故答案为:11.1.【题目点拨】本题考查的是样本平均数的求法,,熟练掌握加权平均数公式是解答本题的关键.17、或15【解题分析】

如图1,根据折叠的性质得到AB=A=5,E=BE,根据勾股定理求出BE,如图2,根据折叠的性质得到A=AB=5,求得AB=BF=5,

根据勾股定理得到CF=4根据相似三角形的性质列方程即可得到结论.【题目详解】∵四边形ABCD是矩形,∴AD=BC=3,CD=AB=5,如图1,由折叠得AB=A=5,E=BE,∴,∴,在Rt△中,,∴,解得BE=;如图2,由折叠得AB=A=5,∵CD∥AB,∴∠=∠,∵,∴,∵AE垂直平分,∴BF=AB=5,∴,∵CF∥AB,∴△CEF∽△ABE,∴,∴,∴BE=15,故答案为:或15.【题目点拨】此题考查矩形的性质,折叠的性质,勾股定理,相似三角形的判定及性质,根据折叠的要求正确画出符合题意的图形进行解答是解题的关键.18、1【解题分析】

根据根与系数的关系得到x1+x2=1,x1×x2=﹣1,然后利用整体思想进行计算.【题目详解】解:∵x1、x2是方程x2﹣x﹣1=1的两根,∴x1+x2=1,x1×x2=﹣1,∴x1+x2+x1x2=1﹣1=1.故答案为:1.【题目点拨】此题考查根与系数的关系,解题关键在于得到x1+x2=1,x1×x2=﹣1.三、解答题(共66分)19、(1)熟练工加工1件A型服装需要2小时,加工1件B型服装需要1小时;(2)违背了广告承诺.【解题分析】试题分析:(1)根据题目中2个等量关系列出,求出结果;(2)通过一次函数的增减性求出最大值为2800,小于开始的承诺3000,故可以判断违背了广告承诺.试题解析:解:(1)设熟练工加工1件型服装需要x小时,加工1件型服装需要y小时.由题意得:,解得:答:熟练工加工1件型服装需要2小时,加工1件型服装需要1小时.……4分当一名熟练工一个月加工型服装件时,则还可以加工型服装件.又∵≥,解得:≥,随着的增大则减小∴当时,有最大值.∴该服装公司执行规定后违背了广告承诺..考点:方程组,函数应用20、证明见解析.【解题分析】

先根据勾股定理求出BD的长度,然后根据勾股定理的逆定理,即可证明CD⊥BC.【题目详解】证明:∵AD⊥BD,AB=13,AD=12,∴BD=1.又∵BC=4,CD=3,∴CD2+BC2=BD2.∴∠C=90°【题目点拨】本题考查了勾股定理及其逆定理,注意:要判断一个角是不是直角,先要构造出三角形,然后知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.21、(1)4(4)10+45【解题分析】

(1)把A点坐标代入反比例函数式y=-12x,求出a值,则A的横坐标可知,由条件知AB=BC,求出OC的长度,则求出D点的坐标,把D点坐标代入y=m(4)现知A点坐标,则可求出OA的长度,根据角平分线的定义和两直线平行内错角相等,等量代换得出∠ADO=∠AOD,所以AO=AD=3,则OC的长度可求,现知DC的长度,用勾股定理即可求出OD的长度,则△AOD的周长可求.【题目详解】(1)当y=4时,a=-124=-∴OB=1.∵矩形ABCD,且AB=BC,∴AB=BC=CD=4,∴OC=1,∴D(1,4),∴m=4.(4)∵∠ABO=90°,A(-1,4),∴OA=3.∵OD平分∠AOC,∴∠AOD=∠DOC.∵AD∥BC,∴∠ADO=∠DOC,∴∠ADO=∠AOD,∴DA=OA=3,∴OC=4.∵∠OCD=90°,∴OD=O∴△AOD的周长是10+45.【题目点拨】本题考查了反比例函数与四边形的综合,灵活应用矩形的性质及等角对等边这一性质求线段长是解题的关键.22、【解题分析】

先化简和,再计算二次根式的除法和乘法,最后进行加减运算即可得解.【题目详解】,==.【题目点拨】此题主要考查了二次根式的混合运算,熟练掌握运算顺序和运算法则是解决此题的关键.23、(1)1万元(2)共有5种进货方案(3)购买A款汽车6辆,B款汽车1辆时对公司更有利【解题分析】分析:(1)求单价,总价明显,应根据数量来列等量关系.等量关系为:今年的销售数量=去年的销售数量.(2)关系式为:公司预计用不多于2万元且不少于11万元的资金购进这两款汽车共15辆.(3)方案获利相同,说明与所设的未知数无关,让未知数x的系数为0即可;多进B款汽车对公司更有利,因为A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,所以要多进B款.详解:(1)设今年5月份A款汽车每辆售价m万元.则:,解得:m=1.经检验,m=1是原方程的根且符合题意.答:今年5月份A款汽车每辆售价1万元;(2)设购进A款汽车x辆,则购进B款汽车(15﹣x)辆,根据题意得:11≤7.5x+6(15﹣x)≤2.解得:6≤x≤3.∵x的正整数解为6,7,8,1,3,∴共有5种进货方案;(3)设总获利为W万元,购进A款汽车x辆,则:W=(1﹣7.5)x+(8﹣6﹣a)(15﹣x)=(a﹣0.5)x+30﹣15a.当a=0.5时,(2)中所有方案获利相同.此时,购买A款汽车6辆,B款汽车1辆时对公司更有利.点睛:本题考查了分式方程和一元一次不等式组的综合应用,找到合适的等量关系及不等关系是解决问题的关键.24、(1)﹣2x2+300x﹣8800;(2)若每个月的利润为2250元,定价应为65元.【解题分析】

(1)设每件商品的售价为x元(x为正整数),则每个月可卖出[100-2(x-60)]件,根据销售利润=每件的利润×销售数量,即可得出结论;(2)由(1)的结论结合每个月的利润为2250元,即可得出关于x的一元二次方程,解之取大于等于60小于等于80的值即可得出结论.【题目详解】(1)设每件商品的售价为x元(x为正整数),则每个月可卖出[100﹣2(x﹣60)]件,∴每个月的销售利润为(x﹣40)[100﹣2(x﹣60)]=﹣2x2+300x﹣8800;(2)根据题意得:﹣2x2+300x﹣8800=2250,解得:x1=65,x2=85(不合题意,舍去).答:若每个月的利润为2250元,定价应为65元.【题目

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论