【历高考试题】版《6高考模拟》:磁场_第1页
【历高考试题】版《6高考模拟》:磁场_第2页
【历高考试题】版《6高考模拟》:磁场_第3页
【历高考试题】版《6高考模拟》:磁场_第4页
【历高考试题】版《6高考模拟》:磁场_第5页
已阅读5页,还剩107页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

PAGEPAGE109【物理精品】2012版《6年高考4年模拟》磁场部分第一部分六年高考荟萃2011年高考题1(2011全国卷1第15题)。如图,两根相互平行的长直导线分别通有方向相反的电流和,且;a、b、c、d为导线某一横截面所在平面内的四点,且a、b、c与两导线共面;b点在两导线之间,b、d的连线与导线所在平面垂直。磁感应强度可能为零的点是A.a点B.b点C.c点D.d点解析:要合磁感应强度为零,必有和形成两个场等大方向,只有C点有可能,选C2(2011海南第7题).自然界的电、热和磁等现象都是相互联系的,很多物理学家为寻找它们之间的联系做出了贡献。下列说法正确的是A.奥斯特发现了电流的磁效应,揭示了电现象和磁现象之间的联系B.欧姆发现了欧姆定律,说明了热现象和电现象之间存在联系C.法拉第发现了电磁感应现象,揭示了磁现象和电现象之间的联系D.焦耳发现了电流的热效应,定量得出了电能和热能之间的转换关系解析:考察科学史,选ACD3(2011海南第10题).空间存在方向垂直于纸面向里的匀强磁场,图中的正方形为其边界。一细束由两种粒子组成的粒子流沿垂直于磁场的方向从O点入射。这两种粒子带同种电荷,它们的电荷量、质量均不同,但其比荷相同,且都包含不同速率的粒子。不计重力。下列说法正确的是A.入射速度不同的粒子在磁场中的运动时间一定不同B.入射速度相同的粒子在磁场中的运动轨迹一定相同C.在磁场中运动时间相同的粒子,其运动轨迹一定相同D.在磁场中运动时间越长的粒子,其轨迹所对的圆心角一定越大解析:在磁场中半径运动时间:(θ为转过圆心角),故BD正确,当粒子从O点所在的边上射出的粒子时:轨迹可以不同,但圆心角相同为1800,因而AC错4(2011新课标理综第14题).为了解释地球的磁性,19世纪安培假设:地球的磁场是由绕过地心的轴的环形电流I引起的。在下列四个图中,正确表示安培假设中环形电流方向的是(B)解析:主要考查安培定则和地磁场分布。根据地磁场分布和安培定则判断可知正确答案是B。5.(2011新课标理综第18题).电磁轨道炮工作原理如图所示。待发射弹体可在两平行轨道之间自由移动,并与轨道保持良好接触。电流I从一条轨道流入,通过导电弹体后从另一条轨道流回。轨道电流可形成在弹体处垂直于轨道面得磁场(可视为匀强磁场),磁感应强度的大小与I成正比。通电的弹体在轨道上受到安培力的作用而高速射出。现欲使弹体的出射速度增加至原来的2倍,理论上可采用的方法是(BD)A.只将轨道长度L变为原来的2倍B.只将电流I增加至原来的2倍C.只将弹体质量减至原来的一半D.将弹体质量减至原来的一半,轨道长度L变为原来的2倍,其它量不变解析:主要考查动能定理。利用动能定理有,B=kI解得。所以正确答案是BD。6(2011浙江第20题).利用如图所示装置可以选择一定速度范围内的带电粒子。图中板MN上方是磁感应强度大小为B、方向垂直纸面向里的匀强磁场,板上有两条宽度分别为2d和d的缝,两缝近端相距为L。一群质量为m、电荷量为q,具有不同速度的粒子从宽度为2d的缝垂直于板MN进入磁场,对于能够从宽度为d的缝射出的粒子,下列说法正确的是A.粒子带正电B.射出粒子的最大速度为C.保持d和L不变,增大B,射出粒子的最大速度与最小速度之差增大D.保持d和B不变,增大L,射出粒子的最大速度与最小速度之差增大答案:BC解析:由左手定则可判断粒子带负电,故A错误;由题意知:粒子的最大半径、粒子的最小半径,根据,可得、,则,故可知B、C正确,D错误。7(2011上海第18题).如图,质量为、长为的直导线用两绝缘细线悬挂于,并处于匀强磁场中。当导线中通以沿正方向的电流,且导线保持静止时,悬线与竖直方向夹角为。则磁感应强度方向和大小可能为(A)正向,(B)正向,(C)负向,(D)沿悬线向上,答案:BC8(2011安徽第23).(16分)xyOPB如图所示,在以坐标原点O为圆心、半径为R的半圆形区域内,有相互垂直的匀强电场和匀强磁场,磁感应强度为B,磁场方向垂直于xOy平面向里。一带正电的粒子(不计重力)从xyOPB(1)求电场强度的大小和方向。(2)若仅撤去磁场,带电粒子仍从O点以相同的速度射入,经时间恰从半圆形区域的边界射出。求粒子运动加速度的大小。(3)若仅撤去电场,带电粒子仍从O点射入,且速度为原来的4倍,求粒子在磁场中运动的时间。解析:(1)设带电粒子的质量为m,电荷量为q,初速度为v,电场强度为E。可判断出粒子受到的洛伦磁力沿x轴负方向,于是可知电场强度沿x轴正方向且有qE=qvB①又R=vt0②则③(2)仅有电场时,带电粒子在匀强电场中作类平抛运动在y方向位移④由②④式得⑤设在水平方向位移为x,因射出位置在半圆形区域边界上,于是又有⑥得⑦(3)仅有磁场时,入射速度,带电粒子在匀强磁场中作匀速圆周运动,设轨道半径为r,由牛顿第二定律有⑧又qE=ma⑨由⑦⑧⑨式得⑩由几何关系eq\o\ac(○,11)即eq\o\ac(○,12)带电粒子在磁场中运动周期则带电粒子在磁场中运动时间所以eq\o\ac(○,13)9(2011全国卷1第25).(19分)如图,与水平面成45°角的平面MN将空间分成I和II两个区域。一质量为m、电荷量为q(q>0)的粒子以速度从平面MN上的点水平右射入I区。粒子在I区运动时,只受到大小不变、方向竖直向下的电场作用,电场强度大小为E;在II区运动时,只受到匀强磁场的作用,磁感应强度大小为B,方向垂直于纸面向里。求粒子首次从II区离开时到出发点的距离。粒子的重力可以忽略。解析:设粒子第一次过MN时速度方向与水平方向成α1角,位移与水平方向成α2角且α2=450,在电场中做类平抛运动,则有:得出:在电场中运行的位移:在磁场中做圆周运动,且弦切角为α=α1-α2,得出:在磁场中运行的位移为:所以首次从II区离开时到出发点的距离为:10(2011新课标理综第25题).(19分)如图,在区域I(0≤x≤d)和区域II(d≤x≤2d)内分别存在匀强磁场,磁感应强度大小分别为B和2B,方向相反,且都垂直于Oxy平面。一质量为m、带电荷量q(q>0)的粒子a于某时刻从y轴上的P点射入区域I,其速度方向沿x轴正向。已知a在离开区域I时,速度方向与x轴正方向的夹角为30°;因此,另一质量和电荷量均与a相同的粒子b也从p点沿x轴正向射入区域I,其速度大小是a的1/3。不计重力和两粒子之间的相互作用力。求(1)粒子a射入区域I时速度的大小;(2)当a离开区域II时,a、b两粒子的y坐标之差。OOBx···yd2d2BPⅠⅡ解析:(1)设粒子a在I内做匀速圆周运动的圆心为C(在y轴上),半径为Ra1,粒子速率为va,运动轨迹与两磁场区域边界的交点为,如图,由洛仑兹力公式和牛顿第二定律得①由几何关系得②③式中,,由①②③式得④(2)设粒子a在II内做圆周运动的圆心为Oa,半径为,射出点为(图中未画出轨迹),。由洛仑兹力公式和牛顿第二定律得⑤由①⑤式得⑥、和三点共线,且由⑥式知点必位于⑦的平面上。由对称性知,点与点纵坐标相同,即⑧式中,h是C点的y坐标。设b在I中运动的轨道半径为,由洛仑兹力公式和牛顿第二定律得⑨设a到达点时,b位于点,转过的角度为。如果b没有飞出I,则⑩eq\o\ac(○,11)式中,t是a在区域II中运动的时间,而eq\o\ac(○,12)eq\o\ac(○,13)由⑤⑨⑩eq\o\ac(○,11)eq\o\ac(○,12)eq\o\ac(○,13)式得eq\o\ac(○,14)由①③⑨eq\o\ac(○,14)式可见,b没有飞出。点的y坐标为eq\o\ac(○,15)由①③⑧⑨eq\o\ac(○,14)eq\o\ac(○,15)式及题给条件得,a、b两粒子的y坐标之差为eq\o\ac(○,16)11(2011天津第12题).(20分)回旋加速器在核科学、核技术、核医学等高新技术领域得到了广泛应用,有力地推动了现代科学技术的发展。(1)当今医学成像诊断设备PET/CT堪称“现代医学高科技之冠”,它在医疗诊断中,常利用能放射电子的同位素碳11为示踪原子,碳11是由小型回旋加速器输出的高速质子轰击氮14获得,同时还产生另一粒子,试写出核反应方程。若碳11的半衰期τ为20min,经2.0h剩余碳11的质量占原来的百分之几?(结果取2位有效数字)(2)回旋加速器的原理如图,D1和D2是两个中空的半径为R的半圆金属盒,它们接在电压一定、频率为f的交流电源上,位于D1圆心处的质子源A能不断产生质子(初速度可以忽略,重力不计),它们在两盒之间被电场加速,D1、D2置于与盒面垂直的磁感应强度为B的匀强磁场中。若质子束从回旋加速器输出时的平均功率为P,求输出时质子束的等效电流I与P、B、R、f的关系式(忽略质子在电场中运动的时间,其最大速度远小于光速)(3)试推理说明:质子在回旋加速器中运动时,随轨道半径r的增大,同一盒中相邻轨道的半径之差是增大、减小还是不变?解析:(1)核反应方程为 ①设碳11原有质量为m0,经过t=2.0h剩余的质量为mt,根据半衰期定义,有: ②(2)设质子质量为m,电荷量为q,质子离开加速器时速度大小为v,由牛顿第二定律知: ③质子运动的回旋周期为: ④由回旋加速器工作原理可知,交变电源的频率与质子回旋频率相同,由周期T与频率f的关系可得: ⑤设在t时间内离开加速器的质子数为N,则质子束从回旋加速器输出时的平均功率 ⑥输出时质子束的等效电流为: ⑦由上述各式得若以单个质子为研究对象解答过程正确的同样给分(3)方法一:设k(k∈N*)为同一盒子中质子运动轨道半径的序数,相邻的轨道半径分别为rk,rk+1(rk>rk+1),,在相应轨道上质子对应的速度大小分别为vk,vk+1,D1、D2之间的电压为U,由动能定理知 ⑧由洛伦兹力充当质子做圆周运动的向心力,知,则 ⑨整理得 ⑩因U、q、m、B均为定值,令,由上式得 ⑾相邻轨道半径rk+1,rk+2之差同理因为rk+2>rk,比较,得说明随轨道半径r的增大,同一盒中相邻轨道的半径之差减小方法二:设k(k∈N*)为同一盒子中质子运动轨道半径的序数,相邻的轨道半径分别为rk,rk+1(rk>rk+1),,在相应轨道上质子对应的速度大小分别为vk,vk+1,D1、D2之间的电压为U由洛伦兹力充当质子做圆周运动的向心力,知,故 ⑿由动能定理知,质子每加速一次,其动能增量 ⒀以质子在D2盒中运动为例,第k次进入D2时,被电场加速(2k﹣1)次速度大小为 ⒁同理,质子第(k+1)次进入D2时,速度大小为综合上述各式可得整理得,同理,对于相邻轨道半径rk+1,rk+2,,整理后有由于rk+2>rk,比较,得说明随轨道半径r的增大,同一盒中相邻轨道的半径之差减小,用同样的方法也可得到质子在D1盒中运动时具有相同的结论。12(2011四川第25题).(20分)如图所示:正方形绝缘光滑水平台面WXYZ边长=1.8m,距地面h=0.8m。平行板电容器的极板CD间距d=0.1m且垂直放置于台面,C板位于边界WX上,D板与边界WZ相交处有一小孔。电容器外的台面区域内有磁感应强度B=1T、方向竖直向上的匀强磁场。电荷量q=5×10-13C的微粒静止于W处,在CD间加上恒定电压U=2.5V,板间微粒经电场加速后由D板所开小孔进入磁场(微粒始终不与极板接触),然后由XY边界离开台面。在微粒离开台面瞬时,静止于X正下方水平地面上A点的滑块获得一水平速度,在微粒落地时恰好与之相遇。假定微粒在真空中运动、极板间电场视为匀强电场,滑块视为质点,滑块与地面间的动摩擦因数=0.2,取g=10m/s2(1)求微粒在极板间所受电场力的大小并说明两板地极性;(2)求由XY边界离开台面的微粒的质量范围;(3)若微粒质量mo=1×10-13kg解析:13(2011广东第35题)、(18分)如图19(a)所示,在以O为圆心,内外半径分别为和的圆环区域内,存在辐射状电场和垂直纸面的匀强磁场,内外圆间的电势差U为常量,,一电荷量为+q,质量为m的粒子从内圆上的A点进入该区域,不计重力。已知粒子从外圆上以速度射出,求粒子在A点的初速度的大小若撤去电场,如图19(b),已知粒子从OA延长线与外圆的交点C以速度射出,方向与OA延长线成45°角,求磁感应强度的大小及粒子在磁场中运动的时间在图19(b)中,若粒子从A点进入磁场,速度大小为,方向不确定,要使粒子一定能够从外圆射出,磁感应强度应小于多少?O/r解析:(1)由动能定理:Uq=mv12-mv02①O/r得:v0=(2)如右图:粒子在磁场中作圆周运动的半径为r,则r2=2()2②RV3B1qv2=mRV3由②③得:B1=T=④t=⑤由④⑤t=(3)由B2qv3=m⑥可知,B越小,R越大。与磁场边界相切的圆的最大半径为R=⑦所以B2<答案:(1)v0=(2)B1=t=(3)B2<14(2011北京理综第23题).(18分)利用电场和磁场,可以将比荷不同的离子分开,这种方法在化学分析和原子核技术等领域有重要的应用。如图所示的矩形区域ACDG(AC边足够长)中存在垂直于纸面的匀强磁场,A处有一狭缝。离子源产生的离子,经静电场加速后穿过狭缝沿垂直于GA边且垂直于磁场的方向射入磁场,运动到GA边,被相应的收集器收集。整个装置内部为真空。已知被加速的两种正离子的质量分别是m1和m2(m1>m2),电荷量均为q。加速电场的电势差为U,离子进入电场时的初速度可以忽略。不计重力,也不考虑离子间的相互作用。(1)求质量为m1的离子进入磁场时的速率v1;(2)当磁感应强度的大小为B时,求两种离子在GA边落点的间距s;(3)在前面的讨论中忽略了狭缝宽度的影响,实际装置中狭缝具有一定宽度。若狭缝过宽,可能使两束离子在GA边上的落点区域交叠,导致两种离子无法完全分离。设磁感应强度大小可调,GA边长为定值L,狭缝宽度为d,狭缝右边缘在A处。离子可以从狭缝各处射入磁场,入射方向仍垂直于GA边且垂直于磁场。为保证上述两种离子能落在GA边上并被完全分离,求狭缝的最大宽度。答案.(1)动能定理得eq\o\ac(○,1)(2)由牛顿第二定律,利用eq\o\ac(○,1)式得离子在磁场中的轨道半径为别为,eq\o\ac(○,2)两种离子在GA上落点的间距eq\o\ac(○,3)(3)质量为m1的离子,在GA边上的落点都在其入射点左侧2R1处,由于狭缝的宽度为d,因此落点区域的宽度也是d。同理,质量为m2的离子在GA边上落点区域的宽度也是d。为保证两种离子能完全分离,两个区域应无交叠,条件为eq\o\ac(○,4)利用eq\o\ac(○,2)式,代入eq\o\ac(○,4)式得R1的最大值满足得求得最大值15(2011山东理综第25题).(18分)扭摆器是同步辐射装置中的插入件,能使粒子的运动轨迹发生扭摆。其简化模型如图Ⅰ、Ⅱ两处的条形均强磁场区边界竖直,相距为L,磁场方向相反且垂直干扰面。一质量为m、电量为-q、重力不计的粒子,从靠近平行板电容器MN板处由静止释放,极板间电压为U,粒子经电场加速后平行于纸面射入Ⅰ区,射入时速度与水平和方向夹角(1)当Ⅰ区宽度L1=L、磁感应强度大小B1=B0时,粒子从Ⅰ区右边界射出时速度与水平方向夹角也为,求B0及粒子在Ⅰ区运动的时间t0(2)若Ⅱ区宽度L2=L1=L磁感应强度大小B2=B1=B0,求粒子在Ⅰ区的最高点与Ⅱ区的最低点之间的高度差h(3)若L2=L1=L、B1=B0,为使粒子能返回Ⅰ区,求B2应满足的条件(4)若,且已保证了粒子能从Ⅱ区右边界射出。为使粒子从Ⅱ区右边界射出的方向与从Ⅰ区左边界射出的方向总相同,求B1、B2、L1、、L2、之间应满足的关系式。解析:16(重庆第25题).(19分)某仪器用电场和磁场来控制电子在材料表面上方的运动,如题25图所示,材料表面上方矩形区域PP'N'N充满竖直向下的匀强电场,宽为d;矩形区域NN'M'M充满垂直纸面向里的匀强磁场,磁感应强度为B,长为3s,宽为s;NN'为磁场与电场之间的薄隔离层。一个电荷量为e、质量为m、初速为零的电子,从P点开始被电场加速经隔离层垂直进入磁场,电子每次穿越隔离层,运动方向不变,其动能损失是每次穿越前动能的10%,最后电子仅能从磁场边界M'N'飞出。不计电子所受重力。(1)求电子第二次与第一次圆周运动半径之比;(2)求电场强度的取值范围;(3)A是的中点,若要使电子在A、间垂直于A飞出,求电子在磁场区域中运动的时间。解:

(1)设圆周运动的半径分别为R1、R2、……、Rn、Rn+1,…,第一和第二次圆周运动速率分别为v1和v2,动能分别为Ek1和Ek2

由:Ek2=0.81Ek1,R1=,R2=\

得:R2:R1=0.9

(2)设电场强度为E.第一次到达隔离层前的速率为v′

由:

得:

又由:

得:

(3)设电子在匀强磁场中,圆周运动的周期为T,运动的半圆周个数为n,运动总时间为t,

由题意,有:

得:n=2

又由:T=

得:2010年高考题1.2010·重庆·21如题21图所式,矩形MNPQ区域内有方向垂直于纸面的匀强磁场,有5个带点粒子从图中箭头所示位置垂直于磁场边界进入磁场,在纸面内做匀速圆周运动,运动轨迹为相应的圆弧,,这些粒子的质量,电荷量以及速度大小如下表所示。由以上信息可知,从图中abc处进入的粒子对应表中的编号分别为A.3,5,4B.4,2,5C【答案】D【解析】根据半径公式结合表格中数据可求得1—5各组粒子的半径之比依次为0.5︰2︰3︰3︰2,说明第一组正粒子的半径最小,该粒子从MQ边界进入磁场逆时针运动。由图a、b粒子进入磁场也是逆时针运动,则都为正电荷,而且a、b粒子的半径比为2︰3,则a一定是第2组粒子,b是第4组粒子。c顺时针运动,都为负电荷,半径与a相等是第5组粒子。正确答案D2.2010·全国卷Ⅰ·17某地的地磁场磁感应强度的竖直分量方向向下,大小为T。一灵敏电压表连接在当地入海河段的两岸,河宽100m,该河段涨潮和落潮时有海水(视为导体)流过。设落潮时,海水自西向东流,流速为2m/s。下列说法正确的是A.河北岸的电势较高B.河南岸的电势较高C.电压表记录的电压为9mVD.电压表记录的电压为5mV【答案】BD【解析】海水在落潮时自西向东流,该过程可以理解为:自西向东运动的导体棒在切割竖直向下的磁场。根据右手定则,右岸即北岸是正极电势高,南岸电势低,D对C错。根据法拉第电磁感应定律V,B对A错【命题意图与考点定位】导体棒切割磁场的实际应用题。3.2010·江苏物理·9如图所示,在匀强磁场中附加另一匀强磁场,附加磁场位于图中阴影区域,附加磁场区域的对称轴OO’与SS’垂直。a、b、c三个质子先后从S点沿垂直于磁场的方向摄入磁场,它们的速度大小相等,b的速度方向与SS’垂直,a、c的速度方向与b的速度方向间的夹角分别为,且。三个质子经过附加磁场区域后能达到同一点S’,则下列说法中正确的有A.三个质子从S运动到S’的时间相等B.三个质子在附加磁场以外区域运动时,运动轨迹的圆心均在OO’轴上C.若撤去附加磁场,a到达SS’连线上的位置距S点最近D.附加磁场方向与原磁场方向相同答案:CD4.2010·上海物理·13如图,长为的直导线拆成边长相等,夹角为的形,并置于与其所在平面相垂直的匀强磁场中,磁感应强度为,当在该导线中通以电流强度为的电流时,该形通电导线受到的安培力大小为(A)0(B)0.5(C)(D)答案:C解析:导线有效长度为2lsin30°=l,所以该V形通电导线收到的安培力大小为。选C。本题考查安培力大小的计算。难度:易。5.2010·安徽·20如图所示,水平地面上方矩形区域内存在垂直纸面向里的匀强磁场,两个边长相等的单匝闭合正方形线圈Ⅰ和Ⅱ,分别用相同材料,不同粗细的导线绕制(Ⅰ为细导线)。两线圈在距磁场上界面高处由静止开始自由下落,再进入磁场,最后落到地面。运动过程中,线圈平面始终保持在竖直平面内且下边缘平行于磁场上边界。设线圈Ⅰ、Ⅱ落地时的速度大小分别为v1、v2,在磁场中运动时产生的热量分别为Q1、Q2。不计空气阻力,则A.v1<v2,Q1<Q2B.v1=v2,Q1=Q2C.v1<v2,Q1>Q2D.v1=v2,Q1<Q2【答案】D【解析】由于从同一高度下落,到达磁场边界时具有相同的速度v,切割磁感线产生感应电流同时受到磁场的安培力,又(ρ为材料的电阻率,为线圈的边长),所以安培力,此时加速度,且(为材料的密度),所以加速度是定值,线圈Ⅰ和Ⅱ同步运动,落地速度相等v1=v2。由能量守恒可得:,(H是磁场区域的高度),Ⅰ为细导线m小,产生的热量小,所以Q1<Q2。正确选项D。6.2010·全国卷Ⅰ·26如下图,在区域内存在与xy平面垂直的匀强磁场,磁感应强度的大小为B.在t=0时刻,一位于坐标原点的粒子源在xy平面内发射出大量同种带电粒子,所有粒子的初速度大小相同,方向与y轴正方向的夹角分布在0~180°范围内。已知沿y轴正方向发射的粒子在时刻刚好从磁场边界上点离开磁场。求:粒子在磁场中做圆周运动的半径R及粒子的比荷q/m;此时刻仍在磁场中的粒子的初速度方向与y轴正方向夹角的取值范围;从粒子发射到全部粒子离开磁场所用的时间。【答案】⑴⑵速度与y轴的正方向的夹角范围是60°到120°⑶从粒子发射到全部离开所用时间为【解析】⑴粒子沿y轴的正方向进入磁场,从P点经过做OP的垂直平分线与x轴的交点为圆心,根据直角三角形有解得,则粒子做圆周运动的的圆心角为120°,周期为粒子做圆周运动的向心力由洛仑兹力提供,根据牛顿第二定律得,,化简得⑵仍在磁场中的粒子其圆心角一定大于120°,这样粒子角度最小时从磁场右边界穿出;角度最大时从磁场左边界穿出。角度最小时从磁场右边界穿出圆心角120°,所经过圆弧的弦与⑴中相等穿出点如图,根据弦与半径、x轴的夹角都是30°,所以此时速度与y轴的正方向的夹角是60°。角度最大时从磁场左边界穿出,半径与y轴的的夹角是60°,则此时速度与y轴的正方向的夹角是120°。所以速度与y轴的正方向的夹角范围是60°到120°⑶在磁场中运动时间最长的粒子的轨迹应该与磁场的右边界相切,在三角形中两个相等的腰为,而它的高是RRR,半径与y轴的的夹角是30°,这种粒子的圆心角是240°。所用时间为。RRR所以从粒子发射到全部离开所用时间为。7.2010·海南物理·15右图中左边有一对平行金属板,两板相距为d.电压为V;两板之间有匀强磁场,磁感应强度大小为,方向与金属板面平行并垂直于纸面朝里。图中右边有一半径为R、圆心为O的圆形区域内也存在匀强磁场,磁感应强度大小为B,方向垂直于纸面朝里。一电荷量为q的正离子沿平行于全属板面、垂直于磁场的方向射入平行金属板之间,沿同一方向射出平行金属板之间的区域,并沿直径EF方向射入磁场区域,最后从圆形区城边界上的G点射出.已知弧所对应的圆心角为,不计重力.求(1)离子速度的大小;(2)离子的质量.【答案】(1)(2)【解析】(1)由题设知,离子在平行金属板之间做匀速直线运动,安所受到的向上的压力和向下的电场力平衡 ①式中,是离子运动速度的大小,是平行金属板之间的匀强电场的强度,有 ②由①②式得 ③(2)在圆形磁场区域,离子做匀速圆周运动,由洛伦兹力公式和牛顿第二定律有 ④式中,和分别是离子的质量和它做圆周运动的半径。由题设,离子从磁场边界上的点G穿出,离子运动的圆周的圆心必在过E点垂直于EF的直线上,且在EG的垂直一平分线上(见右图)。由几何关系有 ⑤式中,是与直径EF的夹角,由几何关系得 ⑥联立③④⑤⑥式得,离子的质量为 ⑦8.2010·安徽·23如图1所示,宽度为d的竖直狭长区域内(边界为L1、L2),存在垂直纸面向里的匀强磁场和竖直方向上的周期性变化的电场(如图2所示),电场强度的大小为E0,E>0表示电场方向竖直向上。t=0时,一带正电、质量为m的微粒从左边界上的N1点以水平速度v射入该区域,沿直线运动到Q点后,做一次完整的圆周运动,再沿直线运动到右边界上的N2点。Q为线段N1N2的中点,重力加速度为g。上述d、E0、m、v、g为已知量。(1)求微粒所带电荷量q和磁感应强度B的大小;(2)求电场变化的周期T;(3)改变宽度d,使微粒仍能按上述运动过程通过相应宽度的区域,求T的最小值。电场变化的周期⑨(3)若微粒能完成题述的运动过程,要求⑩联立③④⑥得:eq\o\ac(○,11)设N1Q段直线运动的最短时间t1min,由⑤⑩eq\o\ac(○,11)得因t2不变,T的最小值9.2010·全国卷Ⅱ·26图中左边有一对平行金属板,两板相距为d,电压为V;两板之间有匀强磁场,磁场应强度大小为,方向平行于板面并垂直于纸面朝里。图中右边有一边长为a的正三角形区域EFG(EF边与金属板垂直),在此区域内及其边界上也有匀强磁场,磁感应强度大小为B,方向垂直于纸面朝里。假设一系列电荷量为q的正离子沿平行于金属板面,垂直于磁场的方向射入金属板之间,沿同一方向射出金属板之间的区域,并经EF边中点H射入磁场区域。不计重力已知这些离子中的离子甲到达磁场边界EG后,从边界EF穿出磁场,求离子甲的质量。已知这些离子中的离子乙从EG边上的I点(图中未画出)穿出磁场,且GI长为,求离子乙的质量。若这些离子中的最轻离子的质量等于离子甲质量的一半,而离子乙的质量是最大的,问磁场边界上什么区域内可能有离子到达。【答案】⑴⑵速度与y轴的正方向的夹角范围是60°到120°粒子发射到全部离开所用时间为10.2010·福建·20如图所示的装置,左半部为速度选择器,右半部为匀强的偏转电场。一束同位素离子流从狭缝射入速度选择器,能够沿直线通过速度选择器并从狭缝射出的离子,又沿着与电场垂直的方向,立即进入场强大小为的偏转电场,最后打在照相底片上。已知同位素离子的电荷量为(>0),速度选择器内部存在着相互垂直的场强大小为的匀强电场和磁感应强度大小为的匀强磁场,照相底片D与狭缝、连线平行且距离为L,忽略重力的影响。求从狭缝射出的离子速度的大小;若打在照相底片上的离子在偏转电场中沿速度方向飞行的距离为,求出与离子质量之间的关系式(用、、、、、L表示)。答案:11.2010·新课标·25如图所示,在0≤x≤a、o≤y≤范围内有垂直于xy平面向外的匀强磁场,磁感应强度大小为B。坐标原点O处有一个粒子源,在某时刻发射大量质量为m、电荷量为q的带正电粒子,它们的速度大小相同,速度方向均在xy平面内,与y轴正方向的夹角分布在0~范围内.己知粒子在磁场中做圆周运动的半径介于到a之间,从发射粒子到粒子全部离开磁场经历的时间恰好为粒子在磁场中做圆周运动周期的四分之一.求最后离开磁场的粒子从粒子源射出时的(1)速度大小;(2)速度方向与y轴正方向夹角正弦。12.2010·北京·23利用霍尔效应制作的霍尔元件以及传感器,广泛应用于测量和自动控制等领域。如图1,将一金属或半导体薄片垂直至于磁场B中,在薄片的两个侧面、间通以电流时,另外两侧、间产生电势差,这一现象称霍尔效应。其原因是薄片中的移动电荷受洛伦兹力的作用相一侧偏转和积累,于是、间建立起电场EH,同时产生霍尔电势差UH。当电荷所受的电场力与洛伦兹力处处相等时,EH和UH达到稳定值,UH的大小与和以及霍尔元件厚度之间满足关系式,其中比例系数RH称为霍尔系数,仅与材料性质有关。设半导体薄片的宽度(、间距)为,请写出UH和EH的关系式;若半导体材料是电子导电的,请判断图1中、哪端的电势高;已知半导体薄片内单位体积中导电的电子数为n,电子的电荷量为e,请导出霍尔系数RH的表达式。(通过横截面积S的电流,其中是导电电子定向移动的平均速率);图2是霍尔测速仪的示意图,将非磁性圆盘固定在转轴上,圆盘的周边等距离地嵌装着m个永磁体,相邻永磁体的极性相反。霍尔元件置于被测圆盘的边缘附近。当圆盘匀速转动时,霍尔元件输出的电压脉冲信号图像如图3所示。a.若在时间t内,霍尔元件输出的脉冲数目为,请导出圆盘转速的表达式。b.利用霍尔测速仪可以测量汽车行驶的里程。除除此之外,请你展开“智慧的翅膀”,提出另一个实例或设想。解析:(1)由①得②当电场力与洛伦兹力相等时③得④将③、④代入②,得(2)a.由于在时间t内,霍尔元件输出的脉冲数目为P,则P=mNt圆盘转速为N=提出的实例或设想

2009年高考题一、选择题1.(09年全国卷Ⅰ)17.如图,一段导线abcd位于磁感应强度大小为B的匀强磁场中,且与磁场方向(垂直于纸面向里)垂直。线段ab、bc和cd的长度均为L,且。流经导线的电流为I,方向如图中箭头所示。导线段abcd所受到的磁场的作用力的合力(A)A.方向沿纸面向上,大小为B.方向沿纸面向上,大小为C.方向沿纸面向下,大小为D.方向沿纸面向下,大小为解析:本题考查安培力的大小与方向的判断.该导线可以用a和d之间的直导线长为来等效代替,根据,可知大小为,方向根据左手定则.A正确。2.(09年北京卷)19.如图所示的虚线区域内,充满垂直于纸面向里的匀强磁场和竖直向下的匀强电场。一带电粒子a(不计重力)以一定的初速度由左边界的O点射入磁场、电场区域,恰好沿直线由区域右边界的O′点(图中未标出)穿出。若撤去该区域内的磁场而保留电场不变,另一个同样的粒子b(不计重力)仍以相同初速度由O点射入,从区域右边界穿出,则粒子b(C)A.穿出位置一定在O′点下方B.穿出位置一定在O′点上方C.运动时,在电场中的电势能一定减小D.在电场中运动时,动能一定减小解析:a粒子要在电场、磁场的复合场区内做直线运动,则该粒子一定做匀速直线运动,故对粒子a有:Bqv=Eq即只要满足E=Bv无论粒子带正电还是负电,粒子都可以沿直线穿出复合场区,当撤去磁场只保留电场时,粒子b由于电性不确定,故无法判断从O’点的上方或下方穿出,故AB错误;粒子b在穿过电场区的过程中必然受到电场力的作用而做类似于平抛的运动,电场力做正功,其电势能减小,动能增大,故C项正确D项错误3.(09年广东物理)12.图是质谱仪的工作原理示意图。带电粒子被加速电场加速后,进入速度选择器。速度选择器内相互正交的匀强磁场和匀强电场的强度分别为B和E。平板S上有可让粒子通过的狭缝P和记录粒子位置的胶片A1A2。平板S下方有强度为B0的匀强磁场。下列表述正确的是(ABC)A.质谱仪是分析同位素的重要工具B.速度选择器中的磁场方向垂直纸面向外C.能通过的狭缝P的带电粒子的速率等于E/BD.粒子打在胶片上的位置越靠近狭缝P,粒子的荷质比越小解析:由加速电场可见粒子所受电场力向下,即粒子带正电,在速度选择器中,电场力水平向右,洛伦兹力水平向左,如图所示,因此速度选择器中磁场方向垂直纸面向外B正确;经过速度选择器时满足,可知能通过的狭缝P的带电粒子的速率等于E/B,带电粒子进入磁场做匀速圆周运动则有,可见当v相同时,,所以可以用来区分同位素,且R越大,比荷就越大,D错误。4.(09年广东理科基础)1.发现通电导线周围存在磁场的科学家是(B)A.洛伦兹B.库仑C.法拉第D.奥斯特解析:发现电流的磁效应的科学家是丹麦的奥斯特.而法拉第是发现了电磁感应现象。5.(09年广东理科基础)13.带电粒子垂直匀强磁场方向运动时,会受到洛伦兹力的作用。下列表述正确的是(B)A.洛伦兹力对带电粒子做功B.洛伦兹力不改变带电粒子的动能C.洛伦兹力的大小与速度无关D.洛伦兹力不改变带电粒子的速度方向解析:根据洛伦兹力的特点,洛伦兹力对带电粒子不做功,A错.B对.根据,可知大小与速度有关.洛伦兹力的效果就是改变物体的运动方向,不改变速度的大小。6.(09年广东文科基础)61.带电粒子垂直匀强磁场方向运动时,其受到的洛伦兹力的方向,下列表述正确的是(D)A.与磁场方向相同B.与运动方向相同C.与运动方向相反D.与磁场方向垂直7.(09年山卷)21.如图所示,一导线弯成半径为a的半圆形闭合回路。虚线MN右侧有磁感应强度为B的匀强磁场。方向垂直于回路所在的平面。回路以速度v向右匀速进入磁场,直径CD始络与MN垂直。从D点到达边界开始到C点进入磁场为止,下列结论正确的是(ACD)A.感应电流方向不变B.CD段直线始终不受安培力C.感应电动势最大值E=BavD.感应电动势平均值解析:在闭合电路进入磁场的过程中,通过闭合电路的磁通量逐渐增大,根据楞次定律可知感应电流的方向为逆时针方向不变,A正确。根据左手定则可以判断,受安培力向下,B不正确。当半圆闭合回路进入磁场一半时,即这时等效长度最大为a,这时感应电动势最大E=Bav,C正确。感应电动势平均值,D正确。考点:楞次定律、安培力、感应电动势、左手定则、右手定则提示:感应电动势公式只能来计算平均值,利用感应电动势公式计算时,l应是等效长度,即垂直切割磁感线的长度。8.(09年重庆卷)19.在题19图所示电路中,电池均相同,当电键S分别置于a、b两处时,导线与之间的安培力的大小为、,判断这两段导线(D)A.相互吸引,>B.相互排斥,>C.相互吸引,<D.相互排斥,<9.(09年安徽卷)19.右图是科学史上一张著名的实验照片,显示一个带电粒子在云室中穿过某种金属板运动的径迹。云室旋转在匀强磁场中,磁场方向垂直照片向里。云室中横放的金属板对粒子的运动起阻碍作用。分析此径迹可知粒子(A)A.带正电,由下往上运动B.带正电,由上往下运动C.带负电,由上往下运动D.带负电,由下往上运动解析:粒子穿过金属板后,速度变小,由半径公式可知,半径变小,粒子运动方向为由下向上;又由于洛仑兹力的方向指向圆心,由左手定则,粒子带正电。选A。10.(09年宁夏卷)16.医生做某些特殊手术时,利用电磁血流计来监测通过动脉的血流速度。电磁血流计由一对电极a和b以及磁极N和S构成,磁极间的磁场是均匀的。使用时,两电极a、b均与血管壁接触,两触点的连线、磁场方向和血流速度方向两两垂直,如图所示。由于血液中的正负离子随血流一起在磁场中运动,电极a、b之间会有微小电势差。在达到平衡时,血管内部的电场可看作是匀强电场,血液中的离子所受的电场力和磁场力的合力为零。在某次监测中,两触点的距离为3.0mm,血管壁的厚度可忽略,两触点间的电势差为160µV,磁感应强度的大小为0.040T。则血流速度的近似值和电极a、b的正负为(A)A.1.3m/s,a正、b负B.2.7m/s,a正、C.1.3m/s,a负、b正D.2.7m/s,a负、b正11.(09年安徽卷)20.如图甲所示,一个电阻为R,面积为S的矩形导线框abcd,水平旋转在匀强磁场中,磁场的磁感应强度为B,方向与ad边垂直并与线框平面成450角,o、o’分别是ab和cd边的中点。现将线框右半边obco’绕oo’逆时针900到图乙所示位置。在这一过程中,导线中通过的电荷量是(A)A.B.C.D.0b(c)o(o′)b(c)o(o′)解析:b(c)o(o′)b(c)o(o′)12.(09年海南物理)2.一根容易形变的弹性导线,两端固定。导线中通有电流,方向如图中箭头所示。当没有磁场时,导线呈直线状态:当分别加上方向竖直向上、水平向右或垂直于纸面向外的匀强磁场时,描述导线状态的四个图示中正确的是(D)13.(09年海南物理)4.一长直铁芯上绕有一固定线圈M,铁芯右端与一木质圆柱密接,木质圆柱上套有一闭合金属环N,N可在木质圆柱上无摩擦移动。M连接在如图所示的电路中,其中R为滑线变阻器,和为直流电源,S为单刀双掷开关。下列情况中,可观测到N向左运动的是(C)A.在S断开的情况下,S向a闭合的瞬间B.在S断开的情况下,S向b闭合的瞬间C.在S已向a闭合的情况下,将R的滑动头向c端移动时D.在S已向a闭合的情况下,将R的滑动头向d端移动时二、非选择题14.(09年全国卷Ⅰ)26(21分)如图,在x轴下方有匀强磁场,磁感应强度大小为B,方向垂直于xy平面向外。P是y轴上距原点为h的一点,N0为x轴上距原点为a的一点。A是一块平行于x轴的挡板,与x轴的距离为,A的中点在y轴上,长度略小于。带点粒子与挡板碰撞前后,x方向的分速度不变,y方向的分速度反向、大小不变。质量为m,电荷量为q(q>0)的粒子从P点瞄准N0点入射,最后又通过P点。不计重力。求粒子入射速度的所有可能值。解析:设粒子的入射速度为v,第一次射出磁场的点为,与板碰撞后再次进入磁场的位置为.粒子在磁场中运动的轨道半径为R,有…⑴粒子速率不变,每次进入磁场与射出磁场位置间距离保持不变有…⑵粒子射出磁场与下一次进入磁场位置间的距离始终不变,与相等.由图可以看出……⑶设粒子最终离开磁场时,与档板相碰n次(n=0、1、2、3…).若粒子能回到P点,由对称性,出射点的x坐标应为-a,即……⑷由⑶⑷两式得……⑸若粒子与挡板发生碰撞,有……⑹联立⑶⑷⑹得n<3………⑺联立⑴⑵⑸得………⑻把代入⑻中得…………⑼…………⑾…………⑿15.(09年全国卷Ⅱ)25.(18分)如图,在宽度分别为和的两个毗邻的条形区域分别有匀强磁场和匀强电场,磁场方向垂直于纸面向里,电场方向与电、磁场分界线平行向右。一带正电荷的粒子以速率v从磁场区域上边界的P点斜射入磁场,然后以垂直于电、磁场分界线的方向进入电场,最后从电场边界上的Q点射出。已知PQ垂直于电场方向,粒子轨迹与电、磁场分界线的交点到PQ的距离为d。不计重力,求电场强度与磁感应强度大小之比及粒子在磁场与电场中运动时间之比。答案:解析:本题考查带电粒子在有界磁场中的运动。粒子在磁场中做匀速圆周运动,如图所示.由于粒子在分界线处的速度与分界线垂直,圆心O应在分界线上,OP长度即为粒子运动的圆弧的半径R.由几何关系得………①设粒子的质量和所带正电荷分别为m和q,由洛仑兹力公式和牛顿第二定律得……………②设为虚线与分界线的交点,,则粒子在磁场中的运动时间为……③式中有………④粒子进入电场后做类平抛运动,其初速度为v,方向垂直于电场.设粒子的加速度大小为a,由牛顿第二定律得…………⑤由运动学公式有……⑥………⑦由①②⑤⑥⑦式得…………⑧由①③④⑦式得16.(09年天津卷)11.(18分)如图所示,直角坐标系xOy位于竖直平面内,在水平的x轴下方存在匀强磁场和匀强电场,磁场的磁感应为B,方向垂直xOy平面向里,电场线平行于y轴。一质量为m、电荷量为q的带正电的小球,从y轴上的A点水平向右抛出,经x轴上的M点进入电场和磁场,恰能做匀速圆周运动,从x轴上的N点第一次离开电场和磁场,MN之间的距离为L,小球过M点时的速度方向与x轴的方向夹角为.不计空气阻力,重力加速度为g,求电场强度E的大小和方向;小球从A点抛出时初速度v0的大小;A点到x轴的高度h.答案:(1),方向竖直向上(2)(3)解析:本题考查平抛运动和带电小球在复合场中的运动。(1)小球在电场、磁场中恰能做匀速圆周运动,说明电场力和重力平衡(恒力不能充当圆周运动的向心力),有①②重力的方向竖直向下,电场力方向只能向上,由于小球带正电,所以电场强度方向竖直向上。(2)小球做匀速圆周运动,O′为圆心,MN为弦长,,如图所示。设半径为r,由几何关系知③小球做匀速圆周运动的向心力由洛仑兹力白日提供,设小球做圆周运动的速率为v,有④ 由速度的合成与分解知⑤由③④⑤式得⑥(3)设小球到M点时的竖直分速度为vy,它与水平分速度的关系为⑦由匀变速直线运动规律⑧由⑥⑦⑧式得⑨17.(09年山东卷)25.(18分)如图甲所示,建立Oxy坐标系,两平行极板P、Q垂直于y轴且关于x轴对称,极板长度和板间距均为l,第一四象限有磁场,方向垂直于Oxy平面向里。位于极板左侧的粒子源沿x轴间右连接发射质量为m、电量为+q、速度相同、重力不计的带电粒子在0~3t时间内两板间加上如图乙所示的电压(不考虑极边缘的影响)。已知t=0时刻进入两板间的带电粒子恰好在t0时,刻经极板边缘射入磁场。上述m、q、l、l0、B为已知量。(不

考虑粒子间相互影响及返回板间的情况)图乙图甲图乙图甲(1)求电压U的大小。(2)求时进入两板间的带电粒子在磁场中做圆周运动的半径。(3)何时把两板间的带电粒子在磁场中的运动时间最短?求此最短时间。解析:(1)时刻进入两极板的带电粒子在电场中做匀变速曲线运动,时刻刚好从极板边缘射出,在y轴负方向偏移的距离为,则有①②③联立以上三式,解得两极板间偏转电压为④。(2)时刻进入两极板的带电粒子,前时间在电场中偏转,后时间两极板没有电场,带电粒子做匀速直线运动。带电粒子沿x轴方向的分速度大小为⑤带电粒子离开电场时沿y轴负方向的分速度大小为⑥带电粒子离开电场时的速度大小为⑦设带电粒子离开电场进入磁场做匀速圆周运动的半径为R,则有⑧联立③⑤⑥⑦⑧式解得⑨。(3)时刻进入两极板的带电粒子在磁场中运动时间最短。带电粒子离开磁场时沿y轴正方向的分速度为⑩,设带电粒子离开电场时速度方向与y轴正方向的夹角为,则,联立③⑤⑩式解得,带电粒子在磁场运动的轨迹图如图所示,圆弧所对的圆心角为,所求最短时间为,带电粒子在磁场中运动的周期为,联立以上两式解得。考点:带电粒子在匀强电场、匀强磁场中的运动。18.(09年福建卷)22.(20分)图为可测定比荷的某装置的简化示意图,在第一象限区域内有垂直于纸面向里的匀强磁场,磁感应强度大小B=2.0×10-3T,在X轴上距坐标原点L=0.50m的P处为离子的入射口,在Y上安放接收器,现将一带正电荷的粒子以v=3.5×104m/s的速率从P处射入磁场,若粒子在y轴上距坐标原点L=0.50m(1)求上述粒子的比荷;(2)如果在上述粒子运动过程中的某个时刻,在第一象限内再加一个匀强电场,就可以使其沿y轴正方向做匀速直线运动,求该匀强电场的场强大小和方向,并求出从粒子射入磁场开始计时经过多长时间加这个匀强电场;(3)为了在M处观测到按题设条件运动的上述粒子,在第一象限内的磁场可以局限在一个矩形区域内,求此矩形磁场区域的最小面积,并在图中画出该矩形。答案(1)=4.9×C/kg(或5.0×C/kg);(2);(3)解析:第(1)问本题考查带电粒子在磁场中的运动。第(2)问涉及到复合场(速度选择器模型)第(3)问是带电粒子在有界磁场(矩形区域)中的运动。(1)设粒子在磁场中的运动半径为r。如图甲,依题意M、P连线即为该粒子在磁场中作匀速圆周运动的直径,由几何关系得①由洛伦兹力提供粒子在磁场中作匀速圆周运动的向心力,可得②联立①②并代入数据得=4.9×C/kg(或5.0×C/kg)③(2)设所加电场的场强大小为E。如图乙,当粒子子经过Q点时,速度沿y轴正方向,依题意,在此时加入沿x轴正方向的匀强电场,电场力与此时洛伦兹力平衡,则有④代入数据得⑤所加电场的长枪方向沿x轴正方向。由几何关系可知,圆弧PQ所对应的圆心角为45°,设带点粒子做匀速圆周运动的周期为T,所求时间为t,则有⑥⑦联立①⑥⑦并代入数据得⑧(3)如图丙,所求的最小矩形是,该区域面积⑨联立①⑨并代入数据得矩形如图丙中(虚线)19.(09年浙江卷)25.(22分)如图所示,x轴正方向水平向右,y轴正方向竖直向上。在xOy平面内有与y轴平行的匀强电场,在半径为R的圆内还有与xOy平面垂直的匀强磁场。在圆的左边放置一带电微粒发射装置,它沿x轴正方向发射出一束具有相同质量m、电荷量q(q>0)和初速度v的带电微粒。发射时,这束带电微粒分布在0<y<2R的区间内。已知重力加速度大小为g。(1)从A点射出的带电微粒平行于x轴从C点进入有磁场区域,并从坐标原点O沿y轴负方向离开,求点场强度和磁感应强度的大小和方向。(2)请指出这束带电微粒与x轴相交的区域,并说明理由。(3)若这束带电微粒初速度变为2v,那么它们与x轴相交的区域又在哪里?并说明理由。答案:(1);方向垂直于纸面向外;(2)见解析;(3)与x同相交的区域范围是x>0。解析:本题考查带电粒子在复合场中的运动。带电粒子平行于x轴从C点进入磁场,说明带电微粒所受重力和电场力平衡。设电场强度大小为E,由可得方向沿y轴正方向。带电微粒进入磁场后,将做圆周运动。且r=R如图(a)所示,设磁感应强度大小为B。由得方向垂直于纸面向外(2)这束带电微粒都通过坐标原点。方法一:从任一点P水平进入磁场的带电微粒在磁场中做半径为R的匀速圆周运动,其圆心位于其正下方的Q点,如图b所示,这束带电微粒进入磁场后的圆心轨迹是如图b的虚线半圆,此圆的圆心是坐标原点为。方法二:从任一点P水平进入磁场的带电微粒在磁场中做半径为R的匀速圆周运动。如图b示,高P点与O′点的连线与y轴的夹角为θ,其圆心Q的坐标为(-Rsinθ,Rcosθ),圆周运动轨迹方程为得x=0x=-Rsinθy=0或y=R(1+cosθ)(3)这束带电微粒与x轴相交的区域是x>0带电微粒在磁场中经过一段半径为r′的圆弧运动后,将在y同的右方(x>0)的区域离开磁场并做匀速直线运动,如图c所示。靠近M点发射出来的带电微粒在突出磁场后会射向x同正方向的无穷远处国靠近N点发射出来的带电微粒会在靠近原点之处穿出磁场。所以,这束带电微粒与x同相交的区域范围是x>0.20.(09年江苏卷)14.(16分)1932年,劳伦斯和利文斯设计出了回旋加速器。回旋加速器的工作原理如图所示,置于高真空中的D形金属盒半径为R,两盒间的狭缝很小,带电粒子穿过的时间可以忽略不计。磁感应强度为B的匀强磁场与盒面垂直。A处粒子源产生的粒子,质量为m、电荷量为+q,在加速器中被加速,加速电压为U。加速过程中不考虑相对论效应和重力作用。(1)求粒子第2次和第1次经过两D形盒间狭缝后轨道半径之比;(2)求粒子从静止开始加速到出口处所需的时间t;(3)实际使用中,磁感应强度和加速电场频率都有最大值的限制。若某一加速器磁感应强度和加速电场频率的最大值分别为Bm、fm,试讨论粒子能获得的最大动能E㎞。解析:(1)设粒子第1次经过狭缝后的半径为r1,速度为v1qu=mv12qv1B=m解得同理,粒子第2次经过狭缝后的半径则(2)设粒子到出口处被加速了n圈解得(3)加速电场的频率应等于粒子在磁场中做圆周运动的频率,即当磁场感应强度为Bm时,加速电场的频率应为粒子的动能当≤时,粒子的最大动能由Bm决定解得当≥时,粒子的最大动能由fm决定解得21.(09年江苏物理)15.(16分)如图所示,两平行的光滑金属导轨安装在一光滑绝缘斜面上,导轨间距为l、足够长且电阻忽略不计,导轨平面的倾角为,条形匀强磁场的宽度为d,磁感应强度大小为B、方向与导轨平面垂直。长度为2d的绝缘杆将导体棒和正方形的单匝线框连接在一起组成“”型装置,总质量为m,置于导轨上。导体棒中通以大小恒为I的电流(由外接恒流源产生,图中未图出)。线框的边长为d(d<l),电阻为R,下边与磁场区域上边界重合。将装置由静止释放,导体棒恰好运动到磁场区域下边界处返回,导体棒在整个运动过程中始终与导轨垂直。重力加速度为g。求:(1)装置从释放到开始返回的过程中,线框中产生的焦耳热Q;(2)线框第一次穿越磁场区域所需的时间t1;(3)经过足够长时间后,线框上边与磁场区域下边界的最大距离m。解析:(1)设装置由静止释放到导体棒运动到磁场下边界的过程中,作用在线框上的安培力做功为W由动能定理且解得(2)设线框刚离开磁场下边界时的速度为,则接着向下运动由动能定理装置在磁场中运动时收到的合力感应电动势=Bd感应电流=安培力由牛顿第二定律,在t到t+时间内,有则有解得(3)经过足够长时间后,线框在磁场下边界与最大距离之间往复运动由动能定理解得22.(09年四川卷)25.(20分)如图所示,轻弹簧一端连于固定点O,可在竖直平面内自由转动,另一端连接一带电小球P,其质量m=2×10-2kg,电荷量q=0.2C.将弹簧拉至水平后,以初速度V0=20m/s竖直向下射出小球P,小球P到达O点的正下方O1点时速度恰好水平,其大小V=15m/s.若O、O1相距R=1.5m,小球P在O1点与另一由细绳悬挂的、不带电的、质量M=1.6×10-1kg的静止绝缘小球N相碰。碰后瞬间,小球P脱离弹簧,小球N脱离细绳,同时在空间加上竖直向上的匀强电场E和垂直于纸面的磁感应强度B=1T的弱强磁场。此后,小球P在竖直平面内做半径r=0.5m的圆周运动。小球P、N均可视为质点,小球P的电荷量保持不变,不计空气阻力,取g=10m/s2(1)弹簧从水平摆至竖直位置的过程中,其弹力做功为多少?(2)请通过计算并比较相关物理量,判断小球P、N碰撞后能否在某一时刻具有相同的速度。(3)若题中各量为变量,在保证小球P、N碰撞后某一时刻具有相同速度的前提下,请推导出

r的表达式(要求用B、q、m、θ表示,其中θ为小球N的运动速度与水平方向的夹角)。解析:(1)设弹簧的弹力做功为W,有:①代入数据,得:W=J②(2)由题给条件知,N碰后作平抛运动,P所受电场力和重力平衡,P带正电荷。设P、N碰后的速度大小分别为v1和V,并令水平向右为正方向,有:③而:④若P、N碰后速度同向时,计算可得V<v1,这种碰撞不能实现。P、N碰后瞬时必为反向运动。有:⑤P、N速度相同时,N经过的时间为,P经过的时间为。设此时N的速度V1的方向与水平方向的夹角为,有:⑥⑦代入数据,得:⑧对小球P,其圆周运动的周期为T,有:⑨经计算得:<T,P经过时,对应的圆心角为,有:⑩当B的方向垂直纸面朝外时,P、N的速度相同,如图可知,有:联立相关方程得:比较得,,在此情况下,P、N的速度在同一时刻不可能相同。当B的方向垂直纸面朝里时,P、N的速度相同,同样由图,有:,同上得:,比较得,,在此情况下,P、N的速度在同一时刻也不可能相同。(3)当B的方向垂直纸面朝外时,设在t时刻P、N的速度相同,,再联立④⑦⑨⑩解得:当B的方向垂直纸面朝里时,设在t时刻P、N的速度相同,同理得:,考虑圆周运动的周期性,有:(给定的B、q、r、m、等物理量决定n的取值)23.(09年海南物理)16.(10分)如图,ABCD是边长为的正方形。质量为、电荷量为的电子以大小为的初速度沿纸面垂直于BC变射入正方形区域。在正方形内适当区域中有匀强磁场。电子从BC边上的任意点入射,都只能从A点射出磁场。不计重力,求:(1)次匀强磁场区域中磁感应强度的方向和大小;(2)此匀强磁场区域的最小面积。

解析:(1)设匀强磁场的磁感应强度的大小为B。令圆弧是自C点垂直于BC入射的电子在磁场中的运行轨道。电子所受到的磁场的作用力应指向圆弧的圆心,因而磁场的方向应垂直于纸面向外。圆弧的圆心在CB边或其延长线上。依题意,圆心在A、C连线的中垂线上,故B点即为圆心,圆半径为按照牛顿定律有联立①②式得(2)由(1)中决定的磁感应强度的方向和大小,可知自点垂直于入射电子在A点沿DA方向射出,且自BC边上其它点垂直于入射的电子的运动轨道只能在BAEC区域中。因而,圆弧是所求的最小磁场区域的一个边界。为了决定该磁场区域的另一边界,我们来考察射中A点的电子的速度方向与BA的延长线交角为(不妨设)的情形。该电子的运动轨迹如图所示。图中,圆的圆心为O,pq垂直于BC边,由③式知,圆弧的半径仍为,在D为原点、DC为x轴,AD为轴的坐标系中,P点的坐标为这意味着,在范围内,p点形成以D为圆心、为半径的四分之一圆周,它是电子做直线运动和圆周运动的分界线,构成所求磁场区域的另一边界。因此,所求的最小匀强磁场区域时分别以和为圆心、为半径的两个四分之一圆周和所围成的,其面积为评分参考:本题10分。第(1)问4分,①至③式各1分;得出正确的磁场方向的,再给1分。第(2)问6分,得出“圆弧是所求磁场区域的一个边界”的,给2分;得出所求磁场区域的另一个边界的,再给2分;⑥式2分。24.(09年重庆卷)25.(19分)如题25图,离子源A产生的初速为零、带电量均为e、质量不同的正离子被电压为U0的加速电场加速后匀速通过准直管,垂直射入匀强偏转电场,偏转后通过极板HM上的小孔S离开电场,经过一段匀速直线运动,垂直于边界MN进入磁感应强度为B的匀强磁场。已知HO=d,HS=2d,=90°。(忽略粒子所受重力)(1)求偏转电场场强E0的大小以及HM与MN的夹角;(2)求质量为m的离子在磁场中做圆周运动的半径;(3)若质量为4m的离子垂直打在NQ的中点处,质量为16m的离子打在处。求和之间的距离以及能打在NQ上的正离子的质量范围。解析:2006-2008年高考试题题组一一、选择题1.(08宁夏卷)14.在等边三角形的三个顶点a、b、c处,各有一条长直导线垂直穿过纸面,导线中通有大小相等的恒定电流,方向如图。过c点的导线所受安培力的方向(C)A.与ab边平行,竖直向上B.与ab边平行,竖直向下C.与ab边垂直,指向左边D.与ab边垂直,指向右边【解析】本题考查了左手定则的应用。导线a在c处产生的磁场方向由安培定则可判断,即垂直ac向左,同理导线b在c处产生的磁场方向垂直bc向下,则由平行四边形定则,过c点的合场方向平行于ab,根据左手定则可判断导线c受到的安培力垂直ab边,指向左边。2.(08广东文科)61.如图所示,电流强度为I的一段通电直导线处于匀强磁场中,受到的安培力为F,图中正确标志I和F方向的是(A)【解析】安培力的方向与电流方向和磁场方向都垂直,且满足左手定则。3.(08广东理科)17.有关洛仑兹力和安培力的描述,正确的是(B)A.通电直导线处于匀强磁场中一定受到安培力的作用B.安培力是大量运动电荷所受洛仑兹力的宏观表现C.带电粒子在匀强磁场中运动受到洛仑兹力做正功D.通电直导线在磁场中受到的安培力方向与磁场方向平行【解析】通电直导线与磁场平行,不受安培力,选项A错误,安培力方向与磁场垂直,选项D错误。洛仑兹力对带电粒子不做功,选项C错误,安培力是大量运动电荷所受洛仑兹力的宏观表现,选项B正确。4.(08广东理科)18.电子在匀强磁场中做匀速圆周运动,下列说法正确的是(D)A.速率越大,周期越大B.速率越小,周期越大C.速度方向与磁场方向平行D.度方向与磁场方向垂直【解析】由可知,选项A、B错误,做匀速圆周运动时,速度方向与磁场方向垂直,选项D正确。5.(08广东卷)4.1930年劳伦斯制成了世界上第一台回旋加速器,其原理如图所示,这台加速器由两个铜质D形合D1、D2构成,其间留有空隙,下列说法正确的是(AD)A.离子由加速器的中心附近进入加速器B.离子由加速器的边缘进入加速器C.离子从磁场中获得能量D.离子从电场中获得能量【解析】离子由加速器的中心附近进入加速器,从电场中获取能量,最后从加速器边缘离开加速器,选项A、D正确。6.(08广东卷)9.带电粒子进入云室会使云室中的气体电离,从而显示其运动轨迹.图是在有匀强磁场云室中观察到的粒子的轨迹,a和b是轨迹上的两点,匀强磁场B垂直纸面向里.该粒子在运动时,其质量和电量不变,而动能逐渐减少,下列说法正确的是(AC)A.粒子先经过a点,再经过b点B.粒子先经过b点,再经过a点C.粒子带负电D.粒子带正电【解析】由可知,粒子的动能越小,圆周运动的半径越小,结合粒子运动轨迹可知,粒子选经过a点,再经过b点,选项A正确。根据左手定则可以判断粒子带负电,选项C正确。7.(08四川卷)24.如图,一半径为R的光滑绝缘半球面开口向下,固定在水平面上。整个空间存在匀强磁场,磁感应强度方向竖直向下。一电荷量为q(q>0)、质量为m的小球P在球面上做水平的匀速圆周运动,圆心为O’。球心O到该圆周上任一点的连线与竖直方向的夹角为θ(0<θ<。为了使小球能够在该圆周上运动,求磁感应强度大小的最小值及小球P相应的速率。重力加速度为g。解析:据题意,小球P在球面上做水平的匀速圆周运动,该圆周的圆心为O’。P受到向下的重力mg、球面对它沿OP方向的支持力N和磁场的洛仑兹力f=qvB①式中v为小球运动的速率。洛仑兹力f的方向指向O’。根据牛顿第二定律②③由①②③式得④由于v是实数,必须满足≥0⑤由此得B≥⑥可见,为了使小球能够在该圆周上运动,磁感应强度大小的最小值为⑦此时,带电小球做匀速圆周运动的速率为⑧由⑦⑧式得⑨8.(08重庆卷)25.题25题为一种质谱仪工作原理示意图.在以O为圆心,OH为对称轴,夹角为2α的扇形区域内分布着方向垂直于纸面的匀强磁场.对称于OH轴的C和D分别是离子发射点和收集点.CM垂直磁场左边界于M,且OM=d.现有一正离子束以小发散角(纸面内)从C射出,这些离子在CM方向上的分速度均为v0.若该离子束中比荷为的离子都能汇聚到D,试求:(1)磁感应强度的大小和方向(提示:可考虑沿CM方向运动的离子为研究对象);(2)离子沿与CM成θ角的直线CN进入磁场,其轨道半径和在磁场中的运动时间;(3)线段CM的长度.解析:(1)设沿CM方向运动的离子在磁场中做圆周运动的轨道半径为R由R=d得B=磁场方向垂直纸面向外(2)设沿CN运动的离子速度大小为v,在磁场中的轨道半径为R′,运动时间为t由vcosθ=v0得v=R′==方法一:设弧长为st=s=2(θ+α)×R′t=方法二:离子在磁场中做匀速圆周运动的周期T=t=T×=(3)方法一:CM=MNcot

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论