《弧长和扇形面积》教学设计【初中数学人教版九年级上册】_第1页
《弧长和扇形面积》教学设计【初中数学人教版九年级上册】_第2页
《弧长和扇形面积》教学设计【初中数学人教版九年级上册】_第3页
《弧长和扇形面积》教学设计【初中数学人教版九年级上册】_第4页
《弧长和扇形面积》教学设计【初中数学人教版九年级上册】_第5页
已阅读5页,还剩3页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第二十四章概率初步弧长和扇形面积教学设计教材分析教材分析本节是新人教版九年级上册数学第24.4弧长和面积之前的关系,在学习了圆的性质与多边形和圆的关系的基础上进一步学习圆的有关计算,本节要经历探索弧长计算公式及扇形面积计算公式的过程;了解弧长计算公式及扇形面积计算公式,过用弧长及扇形面积公式解决实际问题,让学生体验数学与人类生活的密切联系,激发学生学习数学的兴趣,提高他们的学习积极性,同时提高大家的运用能力.教学目标教学目标经历探索弧长计算公式及扇形面积计算公式的过程;了解弧长计算公式及扇形面积计算公式,并会应用公式解决问题.经历探索弧长计算公式及扇形面积计算公式的过程,培养学生的探索能力;了解弧长及扇形面积公式后,能用公式解决问题,训练学生的数学运用能力.经历探索弧长及扇形面积计算公式,让学生体验教学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性;通过用弧长及扇形面积公式解决实际问题,让学生体验数学与人类生活的密切联系,激发学生学习数学的兴趣,提高他们的学习积极性,同时提高大家的运用能力.教学重难点教学重难点【教学重点】1.经历探索弧长及扇形面积计算公式的过程.2.了解弧长及扇形面积计算公式.3.会用公式解决问题.【教学难点】1.探索弧长及扇形面积计算公式.2.用公式解决实际问题.课前准备课前准备教师:多媒体课件;教学过程教学过程一、创设情境,引入新知1.图片欣赏.这些图片有什么共同点?2.情境引入.问题1如图,在运动会的4×100米比赛中,甲和乙分别在第1跑道和第2跑道,为什么他们的起跑线不在同一处?问题2怎样来计算弯道的“展直长度”?二、合作交流,探究新知1.与弧长相关的计算问题1半径为R的圆,周长是多少?问题2下图中各圆心角所对的弧长分别是圆周长的几分之几?(1)圆心角是180°,占整个周角的,因此它所对的弧长是圆周长的__________.(2)圆心角是90°,占整个周角的,因此它所对的弧长是圆周长的__________.(3)圆心角是45°,占整个周角的,因此它所对的弧长是圆周长的__________.(4)圆心角是n°,占整个周角的,因此它所对的弧长是圆周长的__________.弧长公式在半径为R的圆中,n°的圆心角所对的弧长(arclength)的计算公式为:l=.用弧长公式进行计算时,要注意公式中n的意义.n表示1°圆心角的倍数,它是不带单位的.算一算已知弧所对的圆心角为60°,半径是4,则弧长为.2.圆的一条弧和经过这条弧的端点的两条半径所围成的图形叫作扇形.如图,黄色部分是一个扇形,记作扇形OAB.下列图形是扇形吗?问题1半径为r的圆,面积是多少?问题2下图中各扇形面积分别是圆面积的几分之几,具体是多少呢?3.半径为r的圆中,圆心角为n°的扇形的面积如果圆的半径为R,则圆的面积为πR2,1°的圆心角对应的扇形面积为,n°的圆心角对应的扇形面积为n·.因此扇形面积的计算公式为S扇形=πR2,其中R为扇形的半径,n为圆心角.公式中n的意义.n表示1°圆心角的倍数,它是不带单位的;公式要理解记忆(即按照上面推导过程记忆).4.弧长与扇形面积的关系我们探讨了弧长和扇形面积的公式,在半径为R的圆中,n°的圆心角所对的弧长的计算公式为l=πR,n°的圆心角的扇形面积公式为S扇形=πR2,在这两个公式中,弧长和扇形面积都和圆心角n.半径R有关系,因此l和S之间也有一定的关系,你能猜得出吗?请大家互相交流.∵l=πR,S扇形=πR2,∴πR2=R·πR.∴S扇形=lR.5.弓形的面积公式三、运用新知例1制造弯形管道时,要先按中心线计算“展直长度”,再下料,试计算图所示管道的展直长度l.(单位:mm,精确到1mm)例2如图,水平放置的圆柱形排水管道的截面半径是0.6cm,其中水面高0.3cm,求截面上有水部分的面积.(精确到0.01cm)讨论:(1)截面上有水部分的面积是指图上哪一部分?(2)水面高0.3m是指哪一条线段的长?这条线段应该怎样画出来?(3)要求图中阴影部分面积,应该怎么办?四、巩固新知1.已知弧所对的圆周角为90°,半径是4,则弧长为.2.如图,Rt△ABC中,∠C=90°,∠A=30°,BC=2,O、H分别为AB、AC的中点,将△ABC顺时针旋转120°到△A1BC1的位置,则整个旋转过程中线段OH所扫过的面积为()3.如图,☉A、☉B、☉C、☉D两两不相交,且半径都是2cm,则图中阴影部分的面积是.4.如图,Rt△ABC的边BC位于直线l上,AC=,∠ACB=90°,∠A=30°.若Rt△ABC由现在的位置向右无滑动地翻转,当点A第3次落在直线l上时,点A所经过的路线的长为(结果用含π的式子表示).5.(例题变式题)如图、水平放置的圆柱形排水管道的截面半径是0.6cm,其中水面高0.9cm,求截面上有水部分的面积.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论