2024年安徽省合肥市庐阳区第四十二中学八年级下册数学期末学业质量监测模拟试题含解析_第1页
2024年安徽省合肥市庐阳区第四十二中学八年级下册数学期末学业质量监测模拟试题含解析_第2页
2024年安徽省合肥市庐阳区第四十二中学八年级下册数学期末学业质量监测模拟试题含解析_第3页
2024年安徽省合肥市庐阳区第四十二中学八年级下册数学期末学业质量监测模拟试题含解析_第4页
2024年安徽省合肥市庐阳区第四十二中学八年级下册数学期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024年安徽省合肥市庐阳区第四十二中学八年级下册数学期末学业质量监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.一个菱形的周长是20,一条对角线长为6,则菱形的另一条对角线长为()A.4 B.5 C.8 D.102.如图,直线与直线交于点,则根据图象可知不等式的解集是A. B. C. D.3.下列命题中是真命题的有()个.①当x=2时,分式的值为零②每一个命题都有逆命题③如果a>b,那么ac>bc④顺次连接任意四边形各边中点得到的四边形是平行四边形⑤一组对边平行,另一组对边相等的四边形是平行四边形.A.0 B.1 C.2 D.34.若方程是一元二次方程,则m的值为()A.0 B.±1 C.1 D.–15.小刚家院子里的四棵小树E,F,G,H刚好在其梯形院子ABCD各边的中点上,若在四边形EFGH上种满小草,则这块草地的形状是()A.平行四边形B.矩形C.正方形D.梯形6.边长为a,b的长方形,它的周长为14,面积为10,则ab+ab的值为()A.35 B.70 C.140 D.2807.已知四边形ABCD,下列说法正确的是()A.当AD=BC,AB//DC时,四边形ABCD是平行四边形B.当AD=BC,AB=DC时,四边形ABCD是平行四边形C.当AC=BD,AC平分BD时,四边形ABCD是矩形D.当AC=BD,AC⊥BD时,四边形ABCD是正方形8.若,则变形正确的是()A. B. C. D.9.如图,在矩形ABCD中,E是AB边的中点,沿EC对折矩形ABCD,使B点落在点P处,折痕为EC,连结AP并延长AP交CD于F点,连结CP并延长CP交AD于Q点.给出以下结论:①四边形AECF为平行四边形;②∠PBA=∠APQ;③△FPC为等腰三角形;④△APB≌△EPC;其中正确结论的个数为()A.1 B.2 C.3 D.410.如图,DC⊥AC于C,DE⊥AB于E,并且DE=DC,则下列结论中正确的是()A.DE=DF B.BD=FD C.∠1=∠2 D.AB=AC11.如图,□ABCD中,E为BC边上一点,且AE交DC延长线于F,连接BF,下列关于面积的结论中错误的是()A.S△ABF=S△ADE B.S△ABF=S△ADFC.S△ABF=S□ABCD D.S△ADE=S□ABCD12.有一组数据如下:3,a,4,6,7,它们的平均数是5,那么这组数据的方差是()A.10 B. C. D.2二、填空题(每题4分,共24分)13.某公司招聘一名人员,应聘者小王参加面试和笔试,成绩(100分制)如表所示:面试笔试成绩评委1评委2评委392889086如果面试平均成绩与笔试成绩按6:4的比确定,请计算出小王的最终成绩_____.14.直角三角形的两直角边是3和4,则斜边是____________15.如图,直线、、、互相平行,直线、、、互相平行,四边形面积为,四边形面积为,则四边形面积为__________.16.如图,在梯形ABCD中,AD∥BC,AD=6,BC=16,E是BC的中点.点P以每秒1个单位长度的速度从点A出发,沿AD向点D运动;点Q同时以每秒2个单位长度的速度从点C出发,沿CB向点B运动.点P停止运动时,点Q也随之停止运动.当运动时间________秒时,以点P,Q,E,D为顶点的四边形是平行四边形.17.如图,在中,分别以点为圆心,大于的长为半径画弧,两弧交于点,作直线交于点,交于点,连接.若,连接点和的中点,则的长为_______.18.如图,二次函数的图象与x轴交于A,B两点,与y轴交于点C,且,则下列结论:;;;其中正确结论的序号是______.三、解答题(共78分)19.(8分)如图,在中,,,,点、分别在,上,连接.(1)将沿折叠,使点落在边上的点处,如图1,若,求的长;(2)将沿折叠,使点落在边上的点处,如图2,若.①求的长;②求四边形的面积;(3)若点在射线上,点在边上,点关于所在直线的对称点为点,问:是否存在以、为对边的平行四边形,若存在,求出的长;若不存在,请说明理由.20.(8分)如图,平行四边形中,,点、分别在、的延长线上,,,垂足为点,.(1)求证:是中点;(2)求的长.21.(8分)计算:(1)(2)22.(10分)为了更好的治理西流湖水质,保护环境,市治污公司决定购买10台污水处理设备.现有A、B两种型号的设备,其中每台的价格,月处理污水量如下表:A型B型价格(万元/台)ab处理污水量(吨/月)240200经调查:购买一台A型设备比购买一台B型设备多2万元,购买2台A型设备比购买3台B型设备少6万元.(1)求a,b的值;(2)经预算:市治污公司购买污水处理设备的资金不超过105万元,你认为该公司有哪几种购买方案;(3)在(2)问的条件下,若每月要求处理西流湖的污水量不低于2040吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.23.(10分)如图,中,.(1)用尺规作图法在上找一点,使得点到边、的距离相等(保留作图痕迹,不用写作法);(2)在(1)的条件下,若,,求的长.24.(10分)阅读理解在△ABC中,AB、BC、AC三边的长分别为、、2,求这个三角形的面积.解法一:如图1,因为△ABC是等腰三角形,并且底AC=2,根据勾股定理可以求得底边的高AF为1,所以S△ABC=×2×1=1.解法二:建立边长为1的正方形网格,在网格中画出△ABC,使△ABC三个顶点都在小正方形的顶点处,如图2所示,借用网格面积可得S△ABC=S矩形ADEC﹣S△ABD﹣S△EBC=1.方法迁移:请解答下面的问题:在△ABC中,AB、AC、BC三边的长分别为、、,求这个三角形的面积.25.(12分)某校为了迎接体育中考,了解学生的体质情况,学校随机调查了本校九年级名学生“秒跳绳”的次数,并将调查所得的数据整理如下:秒跳绳次数的频数、频率分布表秒跳绳次数的频数分布直方图、根据以上信息,解答下列问题:(1)表中,,;(2)请把频数分布直方图补充完整;(3)若该校九年级共有名学生,请你估计“秒跳绳”的次数以上(含次)的学生有多少人?26.我市射击队为了从甲、乙两名运动员中选出一名运动员参加省运动会比赛,组织了选拔测试,两人分别进行了五次射击,成绩(单位:环)如下:甲109899乙1089810你认为应选择哪位运动员参加省运动会比赛.

参考答案一、选择题(每题4分,共48分)1、C【解析】

首先根据题意画出图形,由菱形周长为20,可求得其边长,又由它的一条对角线长6,利用勾股定理即可求得菱形的另一条对角线长.【详解】如图,∵菱形ABCD的周长为20,对角线AC=6,

∴AB=5,AC⊥BD,OA=AC=3,

∴OB==4,

∴BD=2OB=1,

即菱形的另一条对角线长为1.

故选:C.【点睛】此题考查菱形的性质以及勾股定理.解题关键在于注意菱形的对角线互相平分且垂直.2、A【解析】

根据函数图象交点右侧直线y=ax+b图象在直线:y=mx+n图象的上面,即可得出不等式ax+b>mx+n的解集.【详解】解:直线与直线交于点,不等式为:.故选:.【点睛】此题主要考查了一次函数与不等式,利用数形结合得出不等式的解集是考试重点.3、C【解析】

根据分式为0的条件、命题的概念、不等式的性质、平行四边形的判定定理进行判断即可.【详解】①当x=2时,分式无意义,①是假命题;②每一个命题都有逆命题,②是真命题;③如果a>b,c>0,那么ac>bc,③是假命题;④顺次连接任意四边形各边中点得到的四边形是平行四边形,④是真命题;⑤一组对边平行,另一组对边相等的四边形不一定是平行四边形,⑤是假命题,故选C.4、D【解析】

根据一元二次方程的定义:只含有一个未知数,并且未知数的最高指数是2的整式方程,且二次项系数不等于0,即可进行求解,【详解】因为方程是一元二次方程,所以,,解得且所以,故选D.【点睛】本题主要考查一元二次方程的定义,解决本题的关键是要熟练掌握一元二次方程的定义.5、A【解析】试题分析:连接AC,BD.利用三角形的中位线定理可得EH∥FG,EH=FG.∴这块草地的形状是平行四边形.故选A.考点:1.平行四边形的判定;2.三角形中位线定理.6、B【解析】∵长方形的面积为10,∴ab=10,∵长方形的周长为14,∴2(a+b)=14,∴a+b=7.对待求值的整式进行因式分解,得a2b+ab2=ab(a+b),代入相应的数值,得.故本题应选B.7、B【解析】试题解析:∵一组对边平行且相等的四边形是平行四边形,∴A不正确;∵两组对边分别相等的四边形是平行四边形,∴B正确;∵对角线互相平分且相等的四边形是矩形,∴C不正确;∵对角线互相垂直平分且相等的四边形是正方形,∴D不正确;故选B.考点:1.平行四边形的判定;2.矩形的判定;3.正方形的判定.8、D【解析】

根据不等式的性质即可判断.【详解】若,则x+2<y+2,故A错误;<,故B错误;x-2<y-2,故C错误;,故D正确;故选D.【点睛】此题主要考查不等式的性质,解题的关键是熟知不等式的性质及应用.9、B【解析】分析:①根据三角形内角和为180°易证∠PAB+∠PBA=90°,易证四边形AECF是平行四边形,即可解题;②根据平角定义得:∠APQ+∠BPC=90°,由正方形可知每个内角都是直角,再由同角的余角相等,即可解题;③根据平行线和翻折的性质得:∠FPC=∠PCE=∠BCE,∠FPC≠∠FCP,且∠PFC是钝角,△FPC不一定为等腰三角形;④当BP=AD或△BPC是等边三角形时,△APB≌△FDA,即可解题.详解:①如图,EC,BP交于点G;∵点P是点B关于直线EC的对称点,∴EC垂直平分BP,∴EP=EB,∴∠EBP=∠EPB,∵点E为AB中点,∴AE=EB,∴AE=EP,∴∠PAB=∠PBA,∵∠PAB+∠PBA+∠APB=180°,即∠PAB+∠PBA+∠APE+∠BPE=2(∠PAB+∠PBA)=180°,∴∠PAB+∠PBA=90°,∴AP⊥BP,∴AF∥EC;∵AE∥CF,∴四边形AECF是平行四边形,故①正确;②∵∠APB=90°,∴∠APQ+∠BPC=90°,由折叠得:BC=PC,∴∠BPC=∠PBC,∵四边形ABCD是正方形,∴∠ABC=∠ABP+∠PBC=90°,∴∠ABP=∠APQ,故②正确;③∵AF∥EC,∴∠FPC=∠PCE=∠BCE,∵∠PFC是钝角,当△BPC是等边三角形,即∠BCE=30°时,才有∠FPC=∠FCP,如右图,△PCF不一定是等腰三角形,故③不正确;④∵AF=EC,AD=BC=PC,∠ADF=∠EPC=90°,∴Rt△EPC≌△FDA(HL),∵∠ADF=∠APB=90°,∠FAD=∠ABP,当BP=AD或△BPC是等边三角形时,△APB≌△FDA,∴△APB≌△EPC,故④不正确;其中正确结论有①②,2个,故选B.点睛:本题考查了全等三角形的判定和性质,等腰三角形的性质和判定,矩形的性质,翻折变换,平行四边形的判定,熟练掌握全等三角形的判定与性质是解本题的关键.10、C【解析】分析:如图,由已知条件判断AD平分∠BAC即可解决问题.详解:如图,∵DC⊥AC于C,DE⊥AB于E,且DE=DC,∴点D在∠BAC的角平分线上,∴∠1=∠1.故选C.点睛:该题主要考查了角平分线的判定及其性质的应用问题;牢固掌握角平分线的性质是解题的关键.11、B【解析】

根据△ABF与△ABC等底同高,△ADE与△ADC等底同高,结合平行四边形的性质可得S△ABF=S△ABC=S▱ABCD,S△ADE=S△ADC=S▱ABCD,问题得解.【详解】解:∵AB∥CD,AD∥BC,∴△ABF与△ABC等底同高,△ADE与△ADC等底同高∴S△ABF=S△ABC=S▱ABCD,S△ADE=S△ADC=S▱ABCD,∴S△ABF=S△ADE,∴A,C,D正确;∵S△ADF=S△ADE+S△DEF,S△ABF=S△ADE,∴S△ADF>S△ABF,∴B不正确;故选B.【点睛】本题考查了平行四边形的性质、三角形面积的计算等知识,熟练掌握同底等高的三角形面积相等是解决问题的关键.12、D【解析】

∵3、a、4、6、7,它们的平均数是5,∴(3+a+4+6+7)=5,解得,a=5S2=[(3-5)2+(5-5)2+(4-5)2+(6-5)2+(7-5)2]=2,故选D.二、填空题(每题4分,共24分)13、89.6分【解析】

将面试所有的成绩加起来再除以3即可得小王面试平均成绩,再根据加权平均数的含义和求法,求出小王的最终成绩即可.【详解】∵面试的平均成绩为=88(分),∴小王的最终成绩为=89.6(分),故答案为89.6分.【点睛】此题主要考查了加权平均数的含义和求法,要熟练掌握,解答此题的关键是要明确:数据的权能够反映数据的相对“重要程度”,要突出某个数据,只需要给它较大的“权”,权的差异对结果会产生直接的影响.同时考查了算术平均数的含义和求法,要熟练掌握,解答此题的关键是要明确:算术平均数是加权平均数的一种特殊情况,加权平均数包含算术平均数,当加权平均数中的权相等时,就是算术平均数.14、1【解析】

在直角三角形中,已知两直角边根据勾股定理可以计算斜边.【详解】在直角三角形中,三边边长符合勾股定理,已知两直角边为3、4,则斜边边长==1,故答案为1.【点睛】本题考查了直角三角形中的运用,本题中正确的运用勾股定理求斜边的长是解题的关键.15、1【解析】

由平行四边形的性质可得S△EHB=S△EIH,S△AEF=S△EFJ,S△DFG=S△FKG,S△GCH=S△GHL,由面积和差关系可求四边形IJKL的面积.【详解】解:∵AB∥IL,IJ∥BC,∴四边形EIHB是平行四边形,∴S△EHB=S△EIH,同理可得:S△AEF=S△EFJ,S△DFG=S△FKG,S△GCH=S△GHL,∴四边形IJKL面积=四边形EFGH面积−(四边形ABCD面积−四边形EFGH面积)=11−(18−11)=1,故答案为:1.【点睛】本题考查了平行四边形的判定与性质,由平行四边形的性质得出S△EHB=S△EIH是解题的关键.16、2或【解析】

由已知以点P,Q,E,D为顶点的四边形是平行四边形有两种情况,(1)当Q运动到E和B之间,(2)当Q运动到E和C之间,根据平行四边形的判定,由AD∥BC,所以当PD=QE时为平行四边形.据此设运动时间为t,列出关于t的方程求解.【详解】由已知梯形,

当Q运动到E和B之间,设运动时间为t,则得:=6-t,

解得:t=,

当Q运动到E和C之间,设运动时间为t,则得:-2t=6-t,

解得:t=2,

故当运动时间t为2或秒时,以点P,Q,E,D为顶点的四边形是平行四边形.故答案为2或【点睛】此题主要考查了梯形及平行四边形的性质,关键是由已知明确有两种情况,不能漏解.17、1【解析】

由作图可知,MN为AB的垂直平分线,根据线段垂直平分线的性质得到AF=BF=6,且AE=BE,由线段中点的定义得到EG为△ABC的中位线,从而可得出结果.【详解】解:∵由作图可知,MN为AB的垂直平分线,∴AE=BE,=6,∴.而是的中位线,∴.故答案为:1.【点睛】本题考查了基本作图-作已知线段的垂直平分线:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线)是解题的关键.同时也考查了线段垂直平分线的性质以及三角形的中位线的性质.18、①③④【解析】(1)∵抛物线开口向下,∴,又∵对称轴在轴的右侧,∴,∵抛物线与轴交于正半轴,∴,∴,即①正确;(2)∵抛物线与轴有两个交点,∴,又∵,∴,即②错误;(3)∵点C的坐标为,且OA=OC,∴点A的坐标为,把点A的坐标代入解析式得:,∵,∴,即③正确;(4)设点A、B的坐标分别为,则OA=,OB=,∵抛物线与轴交于A、B两点,∴是方程的两根,∴,∴OA·OB=.即④正确;综上所述,正确的结论是:①③④.三、解答题(共78分)19、(1);(2)①;②;(3)存在,或6.【解析】

(1)先判断出S△ABC=4S△AEF,再求出AB,判断出Rt△AEF∽△Rt△ABC,得出,代值即可得出结论;

(2)先判断出四边形AEMF是菱形,再判断出△CME∽△CBA得出比例式,代值即可得出结论;

(3)分两种情况,利用平行四边形的性质,对边平行且相等,最后用勾股定理即可得出结论.【详解】解:(1)∵沿折叠,折叠后点落在上的点处,∴,,∴,∵,∴,在中,∵,,,∴,∵,∴,∴,∴,即:,∴;(2)①∵沿折叠,折叠后点落在边上的点处,∴,,,∴,∴,∴,∴四边形是菱形,设,则,,∵四边形是菱形,∴,∴,∴,∴,∴,,即:,②由①知,,,∴;(3)①如图3,当点在线段上时,∵与是平行四边形的对边,∴,,由对称性知,,,∴,设,∵,∴,,∴,∴,∴,,∴,,在中,,∴,∴,即:;②如图4,当点在线段的延长线上时,延长交于,同理:,,在中,,∴,∴,∴,即:或6.【点睛】此题是四边形综合题,主要考查了全等三角形的判定和性质,相似三角形的判定和性质,对称的性质,勾股定理,平行四边形的性质,求出AE是解本题的关键.20、(1)证明见解析;(2).【解析】

(1)根据平行四边形的对边平行可以得到AB//CD,又AE//BD,可以证明四边形ABDE是平行四边形,所以AB=DE,故D是EC的中点;

(2)先求出是等边三角形,再求EF.【详解】(1)在平行四边形中,,且,又∵,∴四边形是平行四边形,∴,,即是的中点;(2)∵,∴是直角三角形又∵是的中点,∴,∵,∴,∴是等边三角形,∴,∴在中.【点睛】本题主要考查了平行四边形的性质与判定,直角三角形斜边上的中线等于斜边的一半以及等边三角形的判定,熟练掌握性质定理并灵活运用是解题的关键.21、(1);(2).【解析】

(1)先化简每个二次根式,再合并同类二次根式即得结果;(2)先按照完全平方公式展开,再合并、化简即可.【详解】解:(1)==;(2)=.【点睛】本题考查了二次根式的混合运算,对于二次根式的混合运算,一般先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,最后合并同类二次根式.22、(1);(2)①A型设备0台,B型设备10台;②A型设备1台,B型设备9台;③A型设备2台,B型设备8台.;(3)为了节约资金,应选购A型设备1台,B型设备9台.【解析】

(1)根据“购买一台A型设备比购买一台B型设备多2万元,购买2台A型设备比购买3台B型设备少6万元”即可列出方程组,继而进行求解;(2)可设购买污水处理设备A型设备x台,B型设备(10-x)台,则有12x+10(10-x)≤105,解之确定x的值,即可确定方案;(3)因为每月要求处理流溪河两岸的污水量不低于2040吨,所以有240x+200(10-x)≥2040,解之即可由x的值确定方案,然后进行比较,作出选择.【详解】(1)根据题意得:,∴;(2)设购买污水处理设备A型设备x台,B型设备(10−x)台,则:12x+10(10−x)⩽105,∴x⩽2.5,∵x取非负整数,∴x=0,1,2,∴有三种购买方案:①A型设备0台,B型设备10台;②A型设备1台,B型设备9台;③A型设备2台,B型设备8台.(3)由题意:240x+200(10−x)⩾2040,∴x⩾1,又∵x⩽2.5,x取非负整数,∴x为1,2.当x=1时,购买资金为:12×1+10×9=102(万元),当x=2时,购买资金为:12×2+10×8=104(万元),∴为了节约资金,应选购A型设备1台,B型设备9台.【点睛】此题考查一元一次不等式的应用,二元一次方程组的应用,解题关键在于理解题意列出方程.23、(1)见解析;(2)【解析】

(1)根据题意作∠CAB的角平分线与BC的交点即为所求;(2)根据含30°的直角三角形的性质及勾股定理即可求解.【详解】(1)(2)由(1)可知为的角平分线∴∴∴∴在中,由勾股定理得:即解得:∴【点睛】此题主要考查直角三角形的性质,解题的关键是熟知勾股定理的应用.24、S

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论