江苏省盐城市东台市第一教育集团2024年八年级下册数学期末检测模拟试题含解析_第1页
江苏省盐城市东台市第一教育集团2024年八年级下册数学期末检测模拟试题含解析_第2页
江苏省盐城市东台市第一教育集团2024年八年级下册数学期末检测模拟试题含解析_第3页
江苏省盐城市东台市第一教育集团2024年八年级下册数学期末检测模拟试题含解析_第4页
江苏省盐城市东台市第一教育集团2024年八年级下册数学期末检测模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省盐城市东台市第一教育集团2024年八年级下册数学期末检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.满足下列条件的三角形中,不是直角三角形的是()A.三内角的度数之比为1∶2∶3B.三内角的度数之比为3∶4∶5C.三边长之比为3∶4∶5D.三边长的平方之比为1∶2∶32.如图,在平面直角坐标系xOy中,菱形ABCD的顶点A的坐标为(2,0),点B的坐标为(0,1),点C在第一象限,对角线BD与x轴平行.直线y=x+3与x轴、y轴分别交于点E、F,将菱形ABCD沿x轴向左平移m个单位,当点D落在△EOF的内部时(不包括三角形的边),m的取值范围是()A.4<m<6 B.4≤m≤6 C.4<m<5 D.4≤m<53.下列各组数中不能作为直角三角形的三边长的是()A.,, B.6,8,10 C.7,24,25 D.,3,54.若菱形的周长为8,高为1,则菱形两邻角的度数比为()A.3∶1 B.4∶1 C.5∶1 D.6∶15.下列命题中,是假命题的是()A.在△ABC中,若∠A:∠B:∠C=1:2:3,则△ABC是直角三角形B.在△ABC中,若a2=(b+c)(b-c),则△ABC是直角三角形C.在△ABC中,若∠B=∠C=∠A,则△ABC是直角三角形D.在△ABC中,若a:b:c=5:4:3,则△ABC是直角三角形6.如图,若一次函数与的交点坐标为,则的解集为()A. B. C. D.7.计算:3x2y2=().A.2xy2 B.x2 C.x3 D.xy48.的算术平方根是()A. B.﹣ C. D.±9.关于x的一元二次方程x2+4x+k=0有两个实数根,则k的取值范围是()A.k≤﹣4 B.k<﹣4 C.k≤4 D.k<410.将抛物线y=2(x-7)2+3平移,使平移后的函数图象顶点落在y轴上,则下列平移中正确的是()A.向上平移3个单位B.向下平移3个单位C.向左平移7个单位D.向右平移7个单位二、填空题(每小题3分,共24分)11.把方程x2﹣3=2x用配方法化为(x+m)2=n的形式,则m=_____,n=_____.12.据统计,2008年上海市常住人口数量约为18884600人,用科学计数法表示上海市常住人口数是___________.(保留4个有效数字)13.如图,点在的平分线上,,垂足为,点在上,若,则__.14.计算:=_____________。15.方程的解为_________.16.如图,设四边形ABCD是边长为1的正方形,以对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,如此下去.则第2016个正方形的边长为_____17.统计学校排球队队员的年龄,发现有岁、岁、岁、岁等四种年龄,统计结果如下表,则根据表中信息可以判断表中信息可以判断该排球队队员的平均年龄是__________岁.年龄/岁人数/个18.如图,等边△ABC内有一点O,OA=3,OB=4,OC=5,以点B为旋转中心将BO逆时针旋转60°得到线段,连接,下列结论:①可以看成是△BOC绕点B逆时针旋转60°得到的;②点O与的距离为5;③∠AOB=150°;④S四边形AOBO′=6+4;⑤=6+.其中正确的结论有_____.(填正确序号)三、解答题(共66分)19.(10分)如图,在边长12的正方形ABCD中,点E是CD的中点,点F在边AD上,且AF=3DF,连接BE,BF,EF,请判断△BEF的形状,并说明理由.20.(6分)解下列方程:(1)(2)21.(6分)为了从甲、乙两名学生中选拔一人参加射击比赛,对他们的射击水平进行了测验两人在相同条件下各射靶次,命中的环数如下:甲:,,,,,,,,,乙:,,,,,,,,,(1)分别计算两组数据的方差.(2)如果你是教练你会选拔谁参加比赛?为什么?22.(8分)如图,反比例函数y=(n为常数,n≠0)的图象与一次函数y=kx+8(k为常数,k≠0)的图象在第三象限内相交于点D(﹣,m),一次函数y=kx+8与x轴、y轴分别相交于A、B两点.已知cos∠ABO=.(1)求反比例函数的解析式;(2)点P是x轴上的动点,当△APC的面积是△BDO的面积的2倍时,求点P的坐标.23.(8分)问题:探究函数的图象与性质.小明根据学习函数的经验,对函数的图象与性质进行了研究.下面是小明的研究过程,请补充完成.(1)自变量的取值范围是全体实数,与的几组对应值列表如下:…-4-3-2-104……210n01m34…其中,m=n=;(2)在如图所示的平面直角坐标中,描出以上表中各对对应值为坐标的点,并根据描出的点,画出该函数的图象.(3)观察图象,写出该函数的两条性质.24.(8分)某学校八年级学生举行朗诵比赛,全年级学生都参加,学校对表现优异的学生进行表彰,设置—、二、三等奖和进步奖共四个奖项,赛后将八年级(1)班的获奖情况绘制成如图所示的两幅不完整的统计图,请报据图中的信息,解答下列问题:(1)八年级(1)班共有名学生;(2)将条形图补充完整;在扇形统计图中,“二等奖”对应的扇形的圆心角度数;(3)如果该八年级共有800名学生,请估计荣获一、二、三等奖的学生共有多少名.25.(10分)如图,矩形纸片ABCD中,AB=8,AD=6,折叠纸片使AD边落在对角线BD上,点A落在点A′处,折痕为DG,求AG的长.26.(10分)植树节来临之际,学校准备购进一批树苗,已知2棵甲种树苗和5棵乙种树苗共需113元;3棵甲种树苗和2棵乙种树苗共需87元.(1)求一棵甲种树苗和一棵乙种树苗的售价各是多少元;(2)学校准备购进这两种树苗共100棵,并且乙种树苗的数量不多于甲种树苗数量的2倍,请设计出最省钱的购买方案,并求出此时的总费用.

参考答案一、选择题(每小题3分,共30分)1、B【解析】试题解析:A、因为根据三角形内角和定理可求出三个角分别为30度,60度,90度,所以是直角三角形;

B、根据三角形内角和定理可求出三个角分别为45度,60度,75度,所以不是直角三角形;

C、因为32+42=52,符合勾股定理的逆定理,所以是直角三角形;

D、因为1+2=3,所以是直角三角形.

故选B.2、A【解析】

根据菱形的对角线互相垂直平分表示出点D的坐标,再根据直线解析式求出点D移动到EF上时的x的值,从而得到m的取值范围,即可得出答案.【详解】∵菱形ABCD的顶点A(2,0),点B(1,0),∴点D的坐标为(4,1),当y=1时,x+3=1,解得x=−2,∴点D向左移动2+4=6时,点D在EF上,∵点D落在△EOF的内部(不包括三角形的边),∴4<m<6.故选A.【点睛】本题考查了菱形的性质及点的平移.利用菱形的性质求出点D的坐标并确定点D在EF上时的的横坐标是解题的关键.3、A【解析】

勾股定理的逆定理:若一个三角形的两边长的平方和等于第三边的平方,则这个三角形的直角三角形.【详解】∵()2+()2=7≠()2,∴,,不能作为直角三角形的三边长.故选A.【点睛】本题属于基础应用题,只需熟练掌握勾股定理的逆定理,即可完成.4、C【解析】

先根据菱形的性质求出边长AB=2,再根据直角三角形的性质求出∠B=30°,得出∠DAB=150°,即可得出结论.【详解】解:如图所示:∵四边形ABCD是菱形,菱形的周长为8,∴AB=BC=CD=DA=2,∠DAB+∠B=180°,∵AE=1,AE⊥BC,∴AE=AB,∴∠B=30°,∴∠DAB=150°,∴∠DAB:∠B=5:1;故选:C.【点睛】本题考查了菱形的性质、含30°角的直角三角形的判定;熟练掌握菱形的性质和含30°角的直角三角形的判定是解决问题的关键.5、C【解析】

一个三角形中有一个直角,或三边满足勾股定理的逆定理则为直角三角形,否则则不是,据此依次分析各项即可.【详解】A.△ABC中,若∠B=∠C-∠A,则∠C=∠A+∠B,则△ABC是直角三角形,本选项正确;B.△ABC中,若a2=(b+c)(b-c),则a2=b2-c2,b2=a2+c2,则△ABC是直角三角形,本选项正确;C.△ABC中,若∠A∶∠B∶∠C=3∶4∶5,则∠,故本选项错误;D.△ABC中,若a∶b∶c=5∶4∶3,则△ABC是直角三角形,本选项正确;故选C.【点睛】本题考查的是直角三角形的判定,利用勾股定理的逆定理判断一个三角形是否是直角三角形的一般步骤:①确定三角形的最长边;②分别计算出最长边的平方与另两边的平方和;③比较最长边的平方与另两边的平方和是否相等.若相等,则此三角形是直角三角形;否则,就不是直角三角形.6、A【解析】

根据两函数图象的上下位置关系结合交点的横坐标,即可得出不等式的解集.【详解】解:观察函数图象,可知:当x<3时,直线在直线的下方,

∴不等式的解集为.

故选:A.【点睛】本题考查了一次函数与一元一次不等式以及在数轴上表示不等式的解集,根据两函数图象的上下位置关系找出不等式的解集是解题的关键.7、C【解析】

根据分式除法法则先将除法化为乘法,再进行计算即可.【详解】原式.故选:C.【点睛】本题考查分式的乘除法,明确运算法则是解题关键.8、C【解析】

直接利用算术平方根的定义得出答案.【详解】的算术平方根是:.故选C.【点睛】此题主要考查了算术平方根,正确把握定义是解题关键.9、C【解析】

根据判别式的意义得△=12﹣1k≥0,然后解不等式即可.【详解】根据题意得△=12﹣1k≥0,解得k≤1.故选C.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣1ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.10、C【解析】

按“左加右减括号内,上加下减括号外”的规律平移即可得出所求函数的解析式.【详解】依题意可知,原抛物线顶点坐标为(7,3),平移后抛物线顶点坐标为(0,t)(t为常数),则原抛物线向左平移7个单位即可.故选C.【点睛】本题考查了二次函数图象的平移,其规律是是:将二次函数解析式转化成顶点式y=a(x-h)2+k

(a,b,c为常数,a≠0),确定其顶点坐标(h,k),在原有函数的基础上“h值正右移,负左移;k值正上移,负下移”.二、填空题(每小题3分,共24分)11、-11【解析】

先将常数项移到等号的右边、一次项移到等式左边得x2−2x=3,再配方得(x−1)2=1,故可以得出结果.【详解】∵x2−3=2x,∴x2−2x=3,则x2−2x+1=3+1,即(x−1)2=1,∴m=−1、n=1,故答案为:−1、1.【点睛】本题考查了解一元二次方程,配方法的一般步骤:把常数项移到等号的右边;把二次项的系数化为1;等式两边同时加上一次项系数一半的平方;选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.12、1.888×【解析】

先用用科学记数法表示为:的形式,然后将保留4位有效数字可得.【详解】18884600=1.88846×≈1.888×故答案为:1.888×【点睛】本题考查科学记数法,注意科学记数法还可以表示较小的数,表示形式为:.13、1.【解析】

作EG⊥AO于点G,根据角平分线的性质求得EG的长,然后利用直角三角形中30°的直角边等于斜边的一半求解即可.【详解】解:如图,作EG⊥AO于点G,∵点E在∠BOA的平分线上,EC⊥OB,EC=3,∴EG=EC=3,∵∠AFE=30°,∴EF=2EG=2×3=1,故答案为:1.【点睛】本题考查了角平分线的性质,解题的关键是根据角平分线的性质求得EG的长,难度不大.14、2+【解析】

按二次根式的乘法法则求解即可.【详解】解:.【点睛】本题考查的是二次根式的乘法运算,熟练掌握二次根式的乘法法则是解题的关键.15、【解析】

此题采用因式分解法最简单,解题时首先要观察,然后再选择解题方法.配方法与公式法适用于所用的一元二次方程,因式分解法虽有限制,却最简单.【详解】∵∴∴∴∴故答案为:.【点睛】此题考查解一元二次方程-配方法,解题关键在于掌握运算法则.16、()1.【解析】

首先求出AC、AE、HE的长度,然后猜测命题中隐含的数学规律,即可解决问题.【详解】∵四边形ABCD为正方形,

∴AB=BC=1,∠B=90°,

∴AC2=12+12,AC=;

同理可求:AE=()2,HE=()3…,

∴第n个正方形的边长an=()n-1,

∴第2016个正方形的边长为()1,

故答案为()1.【点睛】本题考查了勾股定理在直角三角形中的运用,考查了学生找规律的能力,本题中找到an的规律是解题的关键.17、【解析】

计算出学校排球队队员的总年龄再除以总人数即可.【详解】解:(岁)所以该排球队队员的平均年龄是14岁.故答案为:14【点睛】本题考查了平均数,掌握求平均数的方法是解题的关键.18、①③⑤【解析】

如图,首先证明△OBO′为等边三角形,得到OO′=OB=4,故选项②错误;证明△ABO′≌△CBO,得到选项①正确;运用勾股定理逆定理证明△AOO′为直角三角形,求出∠AOB的度数,得到选项③正确;运用面积公式求出四边形AOBO′的面积,可判断选项④错误;将△AOB绕A点逆时针旋转60°至△AO″C,可得△AOO″是边长为3的等边三角形,△COO″是边长为3,4,5的直角三角形,再根据S△AOC+S△AOB=S四边形AOCO″=S△COO″+S△AOO″进行计算即可判断选项⑤正确.【详解】解:如下图,连接OO′,∵△ABC为等边三角形,∴∠ABC=60°,AB=CB;由题意得:∠OBO′=60°,OB=O′B,∴△OBO′为等边三角形,∠ABO′=∠CBO,∴OO′=OB=4;∠BOO′=60°,∴选项②错误;在△ABO′与△CBO中,,∴△ABO′≌△CBO(SAS),∴AO′=OC=5,可以看成是△BOC绕点B逆时针旋转60°得到的,∴选项①正确;在△AOO′中,∵32+42=52,∴△AOO′为直角三角形,∴∠AOO′=90°,∠AOB=90°+60°=150°,∴选项③正确;∵S四边形AOBO′=×42×sin60°+×3×4=4+6,∴选项④错误;如下图,将△AOB绕A点逆时针旋转60°至△AO″C,连接OO″,同理可得,△AOO″是边长为3的等边三角形,△COO″是边长为3,4,5的直角三角形,∴S△AOC+S△AOB=S四边形AOCO″=S△COO″+S△AOO″=×3×4+×32×sin60°=6+.故⑤正确;故答案为:①③⑤.【点睛】本题考查旋转的性质、三角形全等的判定和性质、等边三角形的判定和性质、勾股定理的逆定理,熟练掌握旋转的性质、等边三角形的判定和性质、勾股定理的逆定理的应用是解题的关键.三、解答题(共66分)19、△BEF是直角三角形,理由见解析【解析】

因为正方形的四条边相等,边长为12,由E为DC的中点,得出DE和EC的长,AF=3DF,得出AF和DF的长,从而在Rt△ABF中、Rt△BCE中和Rt△DEF中,分别由勾股定理求得BF、BE和EF的长,得到BE2+EF2=BF2,再由勾股定理逆定理证得△BEF是直角三角形.【详解】解:△BEF是直角三角形,理由如下:∵四边形ABCD是正方形,∴∠A=∠C=∠D=20°∵点E是CD的中点,∴DE=CE=CD=1.∵AF=3DF,∴DF=AD=3∴AF=3DF=2.在Rt△ABF中,由勾股定理可得BF2=AB2+AF2=144+81=225,在Rt△BCE中,由勾股定理可得BE2=CB2+CE2=144+31=180,在Rt△DEF中,由勾股定理可得EF2=DF2+DE2=2+31=45,∵BE2+EF2=180+45=225,BF2=225,∴BE2+EF2=BF2∴△BEF是直角三角形.【点睛】此题主要考查直角三角形的判定,解题的关键是熟知勾股定理的逆定理.20、(1);(2)无解【解析】

(1)移项,再因式分解求解即可.(2)方程变形后去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】(1).(2)经检验,是原方程的增根,∴原方程无解【点睛】本题主要考查了解方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.21、(1),;(2)选拔乙参加比赛.理由见解析.【解析】

(1)先求出平均数,再根据方差的定义求解;(2)比较甲、乙两人的成绩的方差作出判断.【详解】解:(1),,,;(2)因为甲、乙两名同学射击环数的平均数相同,乙同学射击的方差小于甲同学的方差,所以乙同学的成绩较稳定,应选乙参加比赛.【点睛】本题考查方差的定义与意义:一般地设n个数据,x1,x2,…xn的平均数为,则方差,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.22、(1)y=x+1,y=(2)(﹣11,0)或(6,0)【解析】

(1)求得A(﹣6,0),即可得出一次函数解析式为y=x+1,进而得到D(,﹣2),即可得到反比例函数的解析式为y=;(2)解方程组求得C(,10),依据△APC的面积是△BDO的面积的2倍,即可得到AP=12,进而得到P(﹣11,0)或(6,0).【详解】解:(1)∵一次函数y=kx+1与y轴交于点B,∴B(0,1).∵在Rt△AOB中,cos∠ABO=,∴tan∠BAO=,∴AO=6,∴A(﹣6,0).∵点A在一次函数y=kx+1图象上,∴k=,∴一次函数解析式为y=x+1.∵点D(,m)在一次函数y=kx+1图象上,∴m=﹣2,即D(,﹣2),∵点D(,﹣2)在反比例函数y=图象上,∴n=2.∴反比例函数的解析式为y=;(2)∵点C是反比例函数y=图象与一次函数y=x+1图象的交点,∴,解得,∴C(,10).∵△APC的面积是△BDO的面积的2倍,∴AP×10=×1×,∴AP=12,又∵A(﹣6,0),点P是x轴上的动点,∴P(﹣11,0)或(6,0).【点睛】本题考查反比例函数与一次函数的交点、用待定系数法求函数解析式、三角函数、三角形面积的计算等知识;求出点A和D的坐标是解决问题的关键.23、(1)m=2,n=-1;(2)见解析;(3)见解析.【解析】

(1)将n、m对应的x的值带入解析式即可;(2)根据表格中的点坐标再直角坐标系上标出,在连接各点即可;(3)根据函数的最值、对称性、增减性回答即可.【详解】解:(1)将带入函数中得:,将带入中得:;(2)如图所示:(3)(答案不唯一,合理即可)1、函数关于直线对称;2、函数在时取得最小值,最小值为-1【点睛】本题是新型函数题型,是中考必考题型,解题的关键是通过函数的基本性质以及图象的分析得到相关的值和特殊的函数性质.24、(1)50;(2)见解析;57.6°;(3)368.【解析】

(1)根据“不得奖”人数及其百分比可得总人数;(2)总人数乘以一等奖所占百分比可得其人数,补全图形,根据各项目百分比之和等于1求得二等奖所占百分比,再乘以360°即可得;(3)用总人数乘以荣获一、二、三等奖的学生占总人数的百分比即可.【详解】解:(1)八年级(1)班共有=50(2)获一等奖人数为:50×10%=5(人),补全图形如下:∵获“二等奖”人数所长百分比为1−5

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论