版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
陕西省延安市2024年八年级数学第二学期期末质量跟踪监视模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.如图,已知正方形ABCD的边长为1,连结AC、BD,CE平分∠ACD交BD于点E,则DE长()A. B. C.1 D.1﹣2.下列选项中,可以用来证明命题“若a²>1,则a>1”是假命题的反例是()A.a=-2. B.a==-1 C.a=1 D.a=23.下列等式成立的是()A.•= B.=2 C.﹣= D.=﹣34.如图,在菱形ABCD中,于E,,,则菱形ABCD的周长是A.5 B.10 C.8 D.125.如图,已知四边形ABCD是平行四边形,下列结论中错误的是()A.当AB=BC时,它是菱形 B.当AC⊥BD时,它是菱形C.当AC=BD时,它是矩形 D.当∠ABC=90°时,它是正方形6.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是()A.12 B.24 C.12 D.167.下列图形既是轴对称图形,又是中心对称图形的是()A.三角形 B.圆 C.角 D.平行四边形8.下列四个图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.9.若,则=()A. B. C. D.无法确定10.若关于x的不等式组x-m<07-2x≤1的整数解共5个,则m的取值范围是(A.7<m<8 B.7<m≤8 C.7≤m<8 D.7≤m≤8二、填空题(每小题3分,共24分)11.如图,矩形ABCD中,AB=16cm,BC=8cm,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为______.12.若关于的方程有增根,则的值是___________.13.菱形中,,,以为边长作正方形,则点到的距离为_________.14.如图,已知四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积为______。15.如图,□ABCD的对角线AC,BD相交于点O,若AO+BO=5,则AC+BD的长是________.16.一次函数的图像经过点,且的值随值的増大而增大,请你写出一个符合所有条件的点的坐标__________.17.2018年国内航空公司规定:旅客乘机时,免费携带行李箱的长,宽,高三者之和不超过115cm.某厂家生产符合该规定的行李箱.已知行李箱的宽为20cm,长与高的比为8:11,则符合此规定的行李箱的高的最大值为cm.18.如果是关于的方程的增根,那么实数的值为__________三、解答题(共66分)19.(10分)这个图案是3世纪三国时期的赵爽在注解《周髀算经》时给出的,人们称它为赵爽弦图.赵爽根据此图指出:四个全等的直角三角形(直角边分别为a、b,斜边为c)可以如图围成一个大正方形,中间的部分是一个小正方形.请用此图证明.20.(6分)如图,在平面直角坐标系中,已知的三个顶点的坐标分别为.(1)将先向右平移4个单位长度,再向上平移2个单位长度,得到,画出;(2)与关于原点成中心对称,画出;(3)和关于点成中心对称,请在图中画出点的位置.21.(6分)某公司调查某中学学生对其环保产品的了解情况,随机抽取该校部分学生进行问卷,结果分“非常了解”、“比较了解”、“一般了解”、“不了解”四种类型,分别记为,根据调查结果绘制了如下尚不完整的统计图.(1)本次问卷共随机调查了名学生,扇形统计图中(2)请根据数据信息,补全条形统计图;(3)若该校有1000名学生,估计选择“非常了解”、“比较了解”共约有多少人?22.(8分)我们都知道在中国象棋中,马走日,象走田,如图所示,假设一匹马经过A、B两点走到点C,请问点A、B在不在马的起始位置所在的点与点C所确定的直线上?请说明你的理由.23.(8分)(1)判断下列各式是否成立(在括号内划√或×)①();②();③();④.()(2)根据(1)中的结果,将你发现的规律,用含有自然数()的式子表示出来;(3)请说明你所发现的规律的正确性.24.(8分)计算:(1)
;(2)25.(10分)如图,▱ABCD中,AC为对角线,G为CD的中点,连接AG并廷长交BC的延长线于点F,连接DF,求证:四边形ACFD为平行四边形.26.(10分)某市建设全长540米的绿化带,有甲、乙两个工程队参加.甲队平均每天绿化的长度是乙队的1.5倍.若由一个工程队单独完成绿化,乙队比甲队对多用6天,分别求出甲、乙两队平均每天绿化的长度。
参考答案一、选择题(每小题3分,共30分)1、A【解析】
过E作EF⊥DC于F,根据正方形对角线互相垂直以及角平分线的性质可得EO=EF,再由正方形的性质可得CO=AC=,继而可得EF=DF=DC-CF=1-,再根据勾股定理即可求得DE长.【详解】过E作EF⊥DC于F,∵四边形ABCD是正方形,∴AC⊥BD,∵CE平分∠ACD交BD于点E,∴EO=EF,∵正方形ABCD的边长为1,∴AC=,∴CO=AC=,∴CF=CO=,∴EF=DF=DC-CF=1-,∴DE==-1,故选A.【点睛】本题考查了正方形的性质、角平分线的性质、勾股定理等知识,正确添加辅助线、熟练应用相关性质与定理进行解题是关键.2、A【解析】根据要证明一个结论不成立,可以通过举反例的方法来证明一个命题是假命题:用来证明命题“若a2>2,则a>2”是假命题的反例可以是:a=-2.因为a=-2时,a2>2,但a<2.故选A3、B【解析】
利用二次根式的乘法法则对、进行判断;利用二次根式的加减法对进行判断;利用二次根式的性质对进行判断.【详解】解:、原式,所以选项错误;、原式,所以选项正确;、原式,所以选项错误;、原式,所以选项错误.故选:.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.4、C【解析】
连接AC,根据线段垂直平分线的性质可得AB=AC=2,然后利用周长公式进行计算即可得答案.【详解】如图连接AC,,,,菱形ABCD的周长,故选C.【点睛】本题考查了菱形的性质、线段的垂直平分线的性质等知识,熟练掌握的灵活应用相关知识是解题的关键.5、D【解析】
A.根据邻边相等的平行四边形是菱形可知:四边形ABCD是平行四边形,当AB=BC时,它是菱形,故A选项正确;B.
∵四边形ABCD是平行四形,当AC⊥BD时,它是菱形,故B选项正确;C.根据对角线相等的平行四边形是矩形可知当AC=BD时,它是矩形,故C选项正确;D.有一个角是直角的平行四边形是矩形,不一定是正方形,故D选项错误;综上所述,符合题意是D选项;故选D.6、D【解析】如图,连接BE,∵在矩形ABCD中,AD∥BC,∠EFB=60°,∴∠AEF=110°-∠EFB=110°-60°=120°,∠DEF=∠EFB=60°.∵把矩形ABCD沿EF翻折点B恰好落在AD边的B′处,∴∠BEF=∠DEF=60°.∴∠AEB=∠AEF-∠BEF=120°-60°=60°.在Rt△ABE中,AB=AE•tan∠AEB=2tan60°=2.∵AE=2,DE=6,∴AD=AE+DE=2+6=1.∴矩形ABCD的面积=AB•AD=2×1=16.故选D.考点:翻折变换(折叠问题),矩形的性质,平行的性质,锐角三角函数定义,特殊角的三角函数值.7、B【解析】
根据轴对称图形与中心对称图形的概念逐项判断可得答案.【详解】解:A、三角形不一定是轴对称图形,不是中心对称图形,故本选项错误;
B、圆既是轴对称图形又是中心对称图形,故本选项正确;
C、角是轴对称图形,不一定是中心对称图形,故本选项错误;
D、平行四边形不是轴对称图形,是中心对称图形,故本选项错误;
故选:B.【点睛】此题主要考查了中心对称图形与轴对称图形的概念:判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;判断中心对称图形是要寻找对称中心,旋转180度后与原图重合.8、A【解析】
根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,根据定义进行分析即可.【详解】解:A、既是轴对称图形又是中心对称图形,故此选项正确;B、是轴对称图形,不是中心对称图形,故此选项错误;C、不是轴对称图形,不是中心对称图形,故此选项错误;D、不是轴对称图形,是中心对称图形,故此选项错误;故选:A.【点睛】此题主要考查了中心对称图形和轴对称图形,关键是掌握中心对称图形和轴对称图形的定义.9、B【解析】
设比值为,然后用表示出、、,再代入算式进行计算即可求解.【详解】设,则,,,.故选:.【点睛】本题考查了比例的性质,利用设“”法表示出、、是解题的关键,设“”法是中学阶段常用的方法之一,需熟练掌握并灵活运用.10、B【解析】
求出不等式组的解集,再根据已知得出关于m的不等式组,即可打得出答案.【详解】x-m<0①解不等式①得:x<m,解不等式②得:x⩾3,所以不等式组的解集是3⩽x<m,∵关于x的不等式x-m<07-2x⩽1的整数解共有5∴7<m⩽8,故选B.【点睛】此题考查一元一次不等式组的整数解,解题关键在于掌握运算法则.二、填空题(每小题3分,共24分)11、1【解析】
因为BC为AF边上的高,要求△AFC的面积,求得AF即可,求证△AFD′≌△CFB,得BF=D′F,设D′F=x,则在Rt△AFD′中,根据勾股定理求x,∴AF=AB-BF.【详解】解:易证△AFD′≌△CFB,
∴D′F=BF,
设D′F=x,则AF=16-x,
在Rt△AFD′中,(16-x)2=x2+82,
解之得:x=6,
∴AF=AB-FB=16-6=10,故答案为:1.【点睛】本题考查了翻折变换-折叠问题,勾股定理的正确运用,本题中设D′F=x,根据直角三角形AFD′中运用勾股定理求x是解题的关键.12、1【解析】解:方程两边都乘(x﹣2),得:x﹣1=m.∵方程有增根,∴最简公分母x﹣2=0,即增根是x=2,把x=2代入整式方程,得m=1.故答案为:1.点睛:本题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.13、5+或5-.【解析】
分两种情况讨论:①当正方形ACFE边EF在AC左侧时,②当正方形ACFE边EF在AC右侧时.【详解】解:∵四边形ABCD是菱形,∠B=60°,
∴△ACD是等边三角形,且DO⊥AC.
∵菱形的边长为5,
∴DO==
分两种情况讨论:
①当正方形ACFE边EF在AC左侧时,
过D点作DH2⊥EF,DH2长度表示点D到EF的距离,
DH2=5+DO=5+;
②当正方形ACFE边EF在AC右侧时,
过D点作DH1⊥EF,DH1长度表示点D到EF的距离,
DH1=5-DO=5-.
故答案为:5+或5-.【点睛】本题考查菱形的性质、正方形的性质、等边三角形的判定和性质,同时考查了分类讨论思想.解决此类问题要借助画图分析求解.14、36【解析】
连接AC,在直角三角形ABC中,由AB及BC的长,利用勾股定理求出AC的长,再由AD及CD的长,利用勾股定理的逆定理得到三角形ACD为直角三角形,根据四边形ABCD的面积=直角三角形ABC的面积+直角三角形ACD的面积,即可求出四边形的面积.【详解】连接AC,如图所示:∵∠B=90°,∴△ABC为直角三角形,又∵AB=3,BC=4,∴根据勾股定理得:AC==5,又∵CD=12,AD=13,∴AD=13=169,CD+AC=12+5=144+25=169,∴CD+AC=AD,∴△ACD为直角三角形,∠ACD=90°,则S四边形ABCD=S△ABC+S△ACD=AB⋅BC+AC⋅CD=×3×4+×5×12=36,故四边形ABCD的面积是36【点睛】此题考查勾股定理的逆定理,勾股定理,解题关键在于作辅助线15、1;【解析】
根据平行四边形的性质可知:AO=OC,BO=OD,从而求得AC+BC的长.【详解】∵四边形ABCD是平行四边形∴OC=AO,OB=OD∵AO=BO=2∴OC+OD=2∴AC+BD=AO+BO+CO+DO=1故答案为:1.【点睛】本题考查平行四边形的性质,解题关键是得出OC+OD=2.16、(1,2)(答案不唯一).【解析】
由于y的值随x值的增大而增大,根据一次函数的增减性得出k>0,可令k=1,那么y=x+1,然后写出点P的坐标即可.【详解】解:由题意可知,k>0即可,
可令k=1,那么一次函数y=kx+1即为y=x+1,
当x=1时,y=2,
所以点P的坐标可以是(1,2).
故答案为(1,2)(答案不唯一).【点睛】本题考查了一次函数图象上点的坐标特征,一次函数的性质,得出k>0是解题的关键.17、55【解析】
利用长与高的比为8:11,进而利用携带行李箱的长、宽、高三者之和不超过115cm得出不等式求出即可.【详解】设长为8x,高为11x,由题意,得:19x+20≤115,解得:x≤5,故行李箱的高的最大值为:11x=55,答:行李箱的高的最大值为55厘米.【点睛】此题主要考查了一元一次不等式的应用,根据题意得出正确不等关系是解题关键.18、1【解析】
分式方程去分母转化为整式方程,把x=2代入计算即可求出k的值.【详解】去分母得:x+2=k+x2-1,把x=2代入得:k=1,故答案为:1.【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.三、解答题(共66分)19、证明见解析【解析】
利用面积关系列式即可得到答案.【详解】∵大正方形面积=4个小直角三角形面积+小正方形面积,∴,∴.【点睛】此题考查了勾股定理的证明过程,正确理解图形中各部分之间的面积关系是解题的关键.20、(1)详见解析;(2)详见解析;(3)详见解析【解析】
(1)根据网格结构找出点A、B、C平移后的对应点A1、B1、C1的位置,然后顺次连接即可;(2)根据网格结构找出A、B、C关于原点O的中心对称点A2、B2、C2的位置,然后顺次连接即可;(3)连接B1B2,C1C2,交点就是对称中心M.【详解】(1)如图所示,(2)如图所示,(3)如图所示.【点睛】本题考查了利用旋转变换作图,利用平移变换作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.另外要求掌握对称中心的定义.21、(1)50;32;(2)见解析;(3)560人.【解析】分析:(1)由条形统计图和扇形统计图可知,用“非常了解”的人数为8人除以所占比例为16%,即可求得总人数;“一般了解”的人数为16人除以总人数即可求所占比例;(2)用总人数减去B、C、D部分的人数求出A部分的人数,然后补全条形统计图即可;(3)先根据扇形统计图得到部分学生“非常了解”和“比较了解”的人数占样本总人数的比例,再由样本估计总体即可求解.详解:(1)8÷16%=50人;16÷50=32%.(2)50-20-16-6=8人.如图,(3)1000×(16%+40%)=560人.点睛:本题考差了扇形统计图和条形统计图的综合,解答此类题目,要善于发现二者之间的关联点,即两个统计图都知道了那个量的数据,从而用条形统计图中的具体数量除以扇形统计图中占的百分比,求出样本容量,进而求解其它未知的量.22、在,理由见解析.【解析】
以B为原点,建立直角坐标系,求出直线BC的解析式,再讲A点坐标代入解析式就可以得出结论.【详解】点A、B、C在一条直线上.如图,以B为原点,建立直角坐标系,A(-1,-1),C(1,1).设直线BC的解析式为:y=kx,由题意,得1=k,∴y=1x.∵x=-1时,∴y=-1.∴A(-1,-1)在直线BC上,∴点A、B、C在一条直线上.【点睛】本题考查了平面直角坐标系的运用,待定系数法求一次函数的解析式的运用,由自变量的值确定函数值的运用,解答时建立平面直角坐标系求出函数的解析式是关键.23、(1)√;√;√;√;(2);
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 阜阳2025年安徽阜阳市颍东区引进急需紧缺教育人才13人笔试历年参考题库附带答案详解
- 赤峰2025年内蒙古赤峰学院附属医院专业技术人员招聘28人笔试历年参考题库附带答案详解
- 自贡2025年四川自贡大安区部分教育事业单位招聘教师13人笔试历年参考题库附带答案详解
- 湛江2025年广东韶关曲江区青少年宫选聘笔试历年参考题库附带答案详解
- 河源广东河源紫金县市场监督管理局招聘编外人员笔试历年参考题库附带答案详解
- 广西2025年广西自然资源遥感院招聘8人笔试历年参考题库附带答案详解
- 宜宾四川宜宾市第三人民医院招聘员额制医疗卫生专技人员104人笔试历年参考题库附带答案详解
- 嘉兴2025年浙江嘉兴南湖实验中学招聘事业编制教师5人笔试历年参考题库附带答案详解
- 2026年数字娱乐产品创意与制作能力测试
- 2026年音乐教育理论与实践题库音乐教学与创作技能要点解析
- 2026年安徽皖信人力资源管理有限公司公开招聘宣城市泾县某电力外委工作人员笔试备考试题及答案解析
- 骨科患者石膏固定护理
- 供热运行与安全知识课件
- 长期照护师技能考试试卷与答案
- Unit 1 Time to Relax Section A(1a-2d)教学课件 人教新教材2024版八年级英语下册
- 工程项目居间合同协议书范本
- 2025年福建省厦门城市职业学院(厦门开放大学)简化程序公开招聘事业单位专业技术岗位人员(2025年3月)考试笔试参考题库附答案解析
- 2025年及未来5年中国对叔丁基苯甲酸市场供需现状及投资战略研究报告
- 造价管理限额设计
- 婚礼中心工作总结
- 公路水运工程生产安全事故应急预案
评论
0/150
提交评论