版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024年安徽省瑶海区数学八年级下册期末调研模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.某商品降价后欲恢复原价,则提价的百分数为().A. B. C. D.2.边长为5cm的菱形,一条对角线长是6cm,则另一条对角线的长是()cm.A.3 B.4 C.6 D.83.若关于x的方程有两个相等的实数根,则常数c的值是A.6 B.9 C.24 D.364.关于x的分式方程有增根,则a的值为()A.﹣3 B.﹣5 C.0 D.25.将直线y=2x﹣1向上平移2个单位长度,可得直线的解析式为()A.y=2x﹣3 B.y=2x﹣2 C.y=2x+1 D.y=2x6..函数的自变量x的取值范围是()A. B.且 C. D.且7.关于x的分式方程有增根,则a的值为()A.2 B.3 C.4 D.58.某班位男同学所穿鞋子的尺码如下表所示,则鞋子尺码的众数和中位数分别是()尺码数人数A. B. C. D.9.若关于x的不等式组的解集为x<3,则k的取值范围为()A.k>1 B.k<1 C.k≥1 D.k≤110.方程3x2﹣7x﹣2=0的根的情况是()A.方程没有实数根B.方程有两个不相等的实数根C.方程有两个相等的实数很D.不确定二、填空题(每小题3分,共24分)11.如图,正方形ABCD的边长为4,P为正方形边上以C为起点,沿CBA的路径移动的动点,设P点经过的路径长为,△APD的面积是,则与的函数关系式为_______.12.在,,,,中任意取一个数,取到无理数的概率是___________.13.方程的根是_____.14.若代数式在实数范围内有意义,则的取值范围为____.15.如图,A、B两点被池塘隔开,在AB外选一点C,连接AC、BC,取AC、BC的中点D、E,量出DE=20米,则AB的长为___________米.16.如图,已知中,,点为的中点,在线段上取点,使与相似,则的长为______________.17.如图,每个小正方形边长为1,A、B、C是小正方形的顶点,则AB2=_____,∠ABC=_____°.18.如图1,是一个三节段式伸缩晾衣架,如图2,是其衣架侧面示意图,为衣架的墙角固定端,为固定支点,为滑动支点,四边形和四边形是菱形,且,点在上滑动时,衣架外延钢体发生角度形变,其外延长度(点和点间的距离)也随之变化,形成衣架伸缩效果,伸缩衣架为初始状态时,衣架外延长度为,当点向点移动时,外延长度为.(1)则菱形的边长为______.(2)如图3,当时,为对角线(不含点)上任意一点,则的最小值为______.三、解答题(共66分)19.(10分)如图,AB=12cm,AC⊥AB,BD⊥AB,AC=BD=9cm,点P在线段AB上以3cm/s的速度,由A向B运动,同时点Q在线段BD上由B向D运动.(1)若点Q的运动速度与点P的运动速度相等,当运动时间t=1(s),△ACP与△BPQ是否全等?说明理由,并直接判断此时线段PC和线段PQ的位置关系;(2)将“AC⊥AB,BD⊥AB”改为“∠CAB=∠DBA”,其他条件不变.若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能使△ACP与△BPQ全等.(3)在图2的基础上延长AC,BD交于点E,使C,D分别是AE,BE中点,若点Q以(2)中的运动速度从点B出发,点P以原来速度从点A同时出发,都逆时针沿△ABE三边运动,求出经过多长时间点P与点Q第一次相遇.20.(6分)如图,直线与直线和直线分别交于点(在的上方).直线和直线交于点,点的坐标为;求线段的长(用含的代数式表示);点是轴上一动点,且为等腰直角三角形,求的值及点的坐标.21.(6分)已知向量、求作:.22.(8分)计算:23.(8分)如图是一个三级台阶,它的第一级的长、宽、高分别为20dm,3dm,2dm,点和点是这个台阶两个相对的端点,点处有一只蚂蚁,想到点去吃可口的食物,则蚂蚁沿着台阶面爬到点的最短路程是多少?24.(8分)已知关于x的一元二次方程x2+mx+2n=0,其中m、n是常数.(1)若m=4,n=2,请求出方程的根;(2)若m=n+3,试判断该一元二次方程根的情况.25.(10分)在平面直角坐标系中的位置如图所示,其中每个小正方形的边长为个单位长度,按要求作图:①画出关于原点的中心对称图形;②画出将绕点逆时针旋转得到③请在网格内过点画一条直线将平分成两个面积相等的部分.26.(10分)如图,四边形ABCD是菱形,过AB的中点E作AC的垂线EF,交AD于点M,交CD的延长线于点F.(1)证明:;(2)若,求当形ABCD的周长;(3)在没有辅助线的前提下,图中共有_________对相似三角形.
参考答案一、选择题(每小题3分,共30分)1、C【解析】解:设原价为元,提价百分数为,则,解得,故选.2、D【解析】
根据菱形的对角线互相垂直平分和勾股定理进行计算即可.【详解】∵菱形对角线互相垂直平分,且一条对角线长为6cm,∴这条对角线的一半长3cm,又∵菱形的边长为5cm,∴由勾股定理得,另一条对角线的一半长4cm,∴另一条对角线长8cm.故选:D.【点睛】本题考查菱形的性质和勾股定理,熟记性质及定理是关键.3、B【解析】
根据判别式的意义得到△=62-4c=0,然后解关于c的一次方程即可.【详解】∵方程x2+6x+c=0有两个相等的实数根,∴△=62-4×1×c=0,解得:c=9,故选B.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.4、B【解析】
分式方程去分母转化为整式方程,由分式方程有增根,确定出x的值,代入整式方程计算即可求出a的值.【详解】分式方程去分母得:x−2=a,由分式方程有增根,得到x+3=0,即x=−3,把x=−3代入整式方程得:a=−5,故选:B.【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.5、C【解析】
根据一次函数的平移规律即可解答.【详解】∵原直线的k=2,b=﹣1;向上平移2个单位长度,得到了新直线,∴新直线的k=2,b=﹣1+2=1.∴新直线的解析式为y=2x+1.故选C.【点睛】本题考查了一次函数的平移规律,熟知一次函数的平移规律是解决问题的关键.6、A【解析】
根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【详解】根据题意得:且x−3≠0,解得:且x≠3,自变量的取值范围,故选:A.【点睛】考查自变量的取值范围,熟练掌握分式以及二次根式有意义的条件是解题的关键.7、D【解析】
分式方程去分母转化为整式方程,由分式方程有增根求出x的值,代入整式方程计算即可求出a的值.【详解】解:去分母得:x+1=a,
由分式方程有增根,得到x-4=0,即x=4,
代入整式方程得:a=5,
故选:D.【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.8、C【解析】
众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【详解】解:数据1出现了10次,次数最多,所以众数为1,
一共有20个数据,位置处于中间的数是:1,1,所以中位数是(1+1)÷2=1.
故选:C.【点睛】本题考查了确定一组数据的中位数和众数的能力.解题的关键是熟练掌握求中位数和众数的方法.9、C【解析】
不等式整理后,由已知解集确定出k的范围即可.【详解】解:不等式整理得:,由不等式组的解集为x<3,所以k+2≥3,得到k的范围是k≥1,故选:C.【点睛】本题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.10、B【解析】
先求一元二次方程的判别式的值,由△与0的大小关系来判断方程根的情况即可求解.【详解】由根的判别式△=b2﹣4ac=(﹣7)2﹣4×3×(﹣2)=49+24=73>0,所以方程有两个不相等的实数根.故选B.【点睛】本题考查了一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.二、填空题(每小题3分,共24分)11、【解析】
分两种情况:点P在CB边上时和点P在AB边上时,分别利用三角形的面积公式求解即可.【详解】当点P在BC边上时,即时,;当点P在AB边上时,即时,;故答案为:.【点睛】本题主要考查一次函数的应用,分情况讨论是解题的关键.12、【解析】
直接利用无理数的定义得出无理数的个数,再利用概率公式求出答案.【详解】解:∵在,,,,中无理数只有这1个数,∴任取一个数,取到无理数的概率是,故答案为:.【点睛】此题主要考查了概率公式以及无理数,正确把握无理数的定义是解题关键.13、,.【解析】方程变形得:x1+1x=0,即x(x+1)=0,可得x=0或x+1=0,解得:x1=0,x1=﹣1.故答案是:x1=0,x1=﹣1.14、且【解析】
根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.【详解】解:根据二次根式有意义,分式有意义得:且≠0,即且.【点睛】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.15、40【解析】【分析】推出DE是三角形ABC的中位线,即可求AB.【详解】因为,D、E是AC、BC的中点,所以,DE是三角形ABC的中位线,所以,AB=2DE=40米故答案为:40【点睛】本题考核知识点:三角形中位线.解题关键点:理解三角形中位线的性质.16、或【解析】
根据题意与相似,可分为两种情况,△AMN∽△ABC或者△AMN∽△ACB,两种情况分别列出比例式求解即可【详解】∵M为AB中点,∴AM=当△AMN∽△ABC,有,即,解得MN=3当△AMN∽△ACB,有,即,解得MN=故填3或【点睛】本题主要考查相似三角形的性质,解题关键在于要对题目进行分情况讨论17、101.【解析】
连接AC,根据勾股定理得到AB2,BC2,AC2的长度,证明△ABC是等腰直角三角形,继而可得出∠ABC的度数.【详解】连接AC.根据勾股定理可以得到:AB2=12+32=10,AC2=BC2=12+22=5,∵5+5=10,即AC2+BC2=AB2,∴△ABC是等腰直角三角形,∴∠ABC=1°.故答案为:10,1.【点睛】考查了勾股定理及其逆定理,判断△ABC是等腰直角三角形是解决本题的关键.18、25;【解析】
(1)过F作于,根据等腰三角形的性质可得.(2)作等边,等边,得到,得出,而当、、、共线时,最小,再根据,继而求出结果.【详解】(1)如图,过F作于,设,由题意衣架外延长度为得,当时,外延长度为.则.则有,∴,∴.∵∴菱形的边长为25cm故答案为:25cm(2)作等边,等边,∴EM=EP,EH=EQ∴,∴,,∴,当、、、共线时,最小,易知,∵,∴的最小值为.【点睛】本题考查菱形的性质,勾股定理等知识,解题的关键是理解题意,学会利用参数构建方程解决问题,属于中考常考题型.三、解答题(共66分)19、(1)△ACP≌△BPQ,理由见解析;线段PC与线段PQ垂直(2)1或(3)9s【解析】
(1)利用SAS证得△ACP≌△BPQ,得出∠ACP=∠BPQ,进一步得出∠APC+∠BPQ=∠APC+∠ACP=90°得出结论即可;
(2)由△ACP≌△BPQ,分两种情况:①AC=BP,AP=BQ,②AC=BQ,AP=BP,建立方程组求得答案即可.(3)因为VQ<VP,只能是点P追上点Q,即点P比点Q多走PB+BQ的路程,据此列出方程,解这个方程即可求得.【详解】(1)当t=1时,AP=BQ=3,BP=AC=9,又∵∠A=∠B=90°,在△ACP与△BPQ中,,∴△ACP≌△BPQ(SAS),∴∠ACP=∠BPQ,∴∠APC+∠BPQ=∠APC+∠ACP=90°,∠CPQ=90°,则线段PC与线段PQ垂直.(2)设点Q的运动速度x,①若△ACP≌△BPQ,则AC=BP,AP=BQ,,解得,②若△ACP≌△BPQ,则AC=BQ,AP=BP,解得,综上所述,存在或使得△ACP与△BPQ全等.(3)因为VQ<VP,只能是点P追上点Q,即点P比点Q多走PB+BQ的路程,设经过x秒后P与Q第一次相遇,∵AC=BD=9cm,C,D分别是AE,BD的中点;∴EB=EA=18cm.当VQ=1时,依题意得3x=x+2×9,解得x=9;当VQ=时,依题意得3x=x+2×9,解得x=12.故经过9秒或12秒时P与Q第一次相遇.【点睛】本题考查了一元一次方程的应用,解题的关键是熟练的掌握一元一次方程的性质与运算.20、(1);(2),且;(3)当时,为等腰直角三角形,此时点坐标为或;当时,为等腰直角三角形,此时点坐标为;当时,为等腰直角三角形,此时点坐标为.【解析】
(1)根据题意联立方程组求解即可.(2)根据题意,当x=t时,求出D、E点的坐标即可,进而表示DE的长度,注意t的取值范围.(3)根据等腰三角形的腰的情况分类讨论即可,第一种情况当时;第二种情况当时,第三种情况当时.逐个计算即可.【详解】解:根据题意可得:解得:所以可得Q点的坐标为;当时,;当时,.点坐标为,点坐标为.在的上方,,且.为等腰直角三角形.或或.若,时,,如图1.解得..点坐标为.若,时,如图2,,解得.点坐标为.若,时,即为斜边,如图3,可得,即.解得.的中点坐标为.点坐标为.若,和时,即,即,(不符合题意,舍去)此时直线不存在.若,时,如图4,即为斜边,可得,即,解得..点坐标为.综上所述:当时,为等腰直角三角形,此时点坐标为或;当时,为等腰直角三角形,此时点坐标为;当时,为等腰直角三角形,此时点坐标为;【点睛】本题主要考查一次函数的相交问题,关键在于第三问中,等腰三角形的分类讨论问题,等腰三角形的分类讨论是常考点,必须熟练掌握计算.21、见解析【解析】
在平面内任取一点,分别作出,,利用向量运算的平行四边形法则即可得到答案.【详解】解:在平面内任取一点,作,作,则即为所求.如下图.【点睛】已知基底求作向量,就是先取平面上任意一点,先分别作出与基底共线的向量,再利用向量加法的平行四边形法则作出和向量.22、【解析】
先把二次根式化简,然后合并同类二次根式,再做乘法并化简求得结果。【详解】解:原式【点睛】本题考查了二次根式的混合运算,熟练掌握计算法则是关键。23、最短路程是25dm.【解析】
先将图形平面展开,再用勾股定理根据两点之间线段最短进行解答.【详解】三级台阶平面展开图为长方形,长为20dm,宽为,则蚂蚁沿台阶面爬行到点最短路程是此长方形的对角线长.可设蚂蚁台阶面爬行到点最短路程为.由勾股定理,得,解得.因此,蚂蚁沿着台阶面爬到点的最短路程是25dm.【点睛】此题考查平面展开-最短路径问题,解题关键在于利用勾股定理进行计算.24、(1)x1=x2=﹣2;(2)当m=n+3时,该一元二次方程有两个不相等的实数根.【解析】
(1)把m、n的值代入方程,求出方程的解即可;(2)先把m=n+3代入方程,再求出△的值,再判断即可.【详解】(1)把m=4,n=2代入方程x2+mx+2n=0
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 磷化、电泳表面处理建设项目环评报告
- 运营卫生管理制度及流程
- 卫生工具房管理制度
- 卫生院宣传报道工作制度
- 肝硬化腹水临床路径利尿剂反应变异
- 2026年社会工作理论与实践结合应用问题库
- 公安反假币宣传课件
- 阜阳2025年安徽阜阳市颍东区引进急需紧缺教育人才13人笔试历年参考题库附带答案详解
- 赤峰2025年内蒙古赤峰学院附属医院专业技术人员招聘28人笔试历年参考题库附带答案详解
- 自贡2025年四川自贡大安区部分教育事业单位招聘教师13人笔试历年参考题库附带答案详解
- 2026年安徽皖信人力资源管理有限公司公开招聘宣城市泾县某电力外委工作人员笔试备考试题及答案解析
- 骨科患者石膏固定护理
- 供热运行与安全知识课件
- 长期照护师技能考试试卷与答案
- Unit 1 Time to Relax Section A(1a-2d)教学课件 人教新教材2024版八年级英语下册
- 工程项目居间合同协议书范本
- 2025年福建省厦门城市职业学院(厦门开放大学)简化程序公开招聘事业单位专业技术岗位人员(2025年3月)考试笔试参考题库附答案解析
- 2025年及未来5年中国对叔丁基苯甲酸市场供需现状及投资战略研究报告
- 造价管理限额设计
- 婚礼中心工作总结
- 公路水运工程生产安全事故应急预案
评论
0/150
提交评论