湖北省恩施州利川市长坪民族初级中学2024届八年级下册数学期末学业质量监测模拟试题含解析_第1页
湖北省恩施州利川市长坪民族初级中学2024届八年级下册数学期末学业质量监测模拟试题含解析_第2页
湖北省恩施州利川市长坪民族初级中学2024届八年级下册数学期末学业质量监测模拟试题含解析_第3页
湖北省恩施州利川市长坪民族初级中学2024届八年级下册数学期末学业质量监测模拟试题含解析_第4页
湖北省恩施州利川市长坪民族初级中学2024届八年级下册数学期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖北省恩施州利川市长坪民族初级中学2024届八年级下册数学期末学业质量监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.一个五边形的内角和为()A.540°B.450°C.360°D.180°2.如图,矩形ABCD的两条对角线相交于点O,∠AOD=60°,AD=2,则AC的长是()A.2 B.4 C. D.3.三角形两边的长分别是8和6,第三边的长是方程x2-12x+20=0的一个实数根,则三角形的周长是()A.24B.24或16C.26D.164.已知一组数据:9,8,8,6,9,5,7,则这组数据的中位数是()A.6B.7C.8D.95.如图,在边长为4的正方形ABCD中,点E、F分别是边BC、CD上的动点.且BE=CF,连接BF、DE,则BF+DE的最小值为()A. B. C. D.6.下列任务中,适宜采用普查方式的是()A.调查某地的空气质量 B.了解中学生每天的睡眠时间C.调查某电视剧在本地区的收视率 D.了解某一天本校因病缺课的学生数7.某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元与上网时间x(h)的函数关系如图所示,则下列判断错误的是A.每月上网时间不足25h时,选择A方式最省钱 B.每月上网费用为60元时,B方式可上网的时间比A方式多C.每月上网时间为35h时,选择B方式最省钱 D.每月上网时间超过70h时,选择C方式最省钱8.下列根式中,与2不是同类二次根式的是()A.18 B.18 C.12 D.9.顺次连接菱形各边中点所形成的四边形是(

)A.平行四边形 B.菱形 C.矩形 D.正方形10.“垃圾分类,从我做起”,以下四幅图案分别代表四类可回收垃圾,其中是中心对称图形的是()A. B. C. D.二、填空题(每小题3分,共24分)11.万州区某中学为丰富学生的课余生活,开展了手工制作比赛,如图是该校八年级进入了校决赛的15名学生制作手工作品所需时间(单位:分钟)的统计图,则这15名学生制作手工作品所需时间的中位数是______.12.当x=2018时,的值为____.13.如图,在正方形网格中有3个小方格涂成了灰色.现从剩余的13个白色小方格中选一个也涂成灰色,使整个涂成灰色的图形成轴对称图形,则这样的白色小方格有______个.14.已知直线与直线平行,那么_______.15.如图,Rt△ABC中,∠ACB=90°,∠A=30°,点D是AB的中点,BC=2cm,则CD=_____cm.16.某研究性学习小组进行了探究活动.如图,已知一架竹梯AB斜靠在墙角MON处,竹梯顶端距离地面AO=12,梯子底端离墙角的距离BO=5m.亮亮在活动中发现无论梯子怎么滑动,在滑动的过程中梯子上总有一个定点到墙角O的距离始终是不变的定值,请问这个定值是_______.17.一种盛饮料的圆柱形杯子(如图),测得它的内部底面半径为2.5cm,高为12cm,吸管放进杯子里,杯口外面至少要露出5.2cm,则吸管的长度至少为_______cm.18.平行四边形ABCD中,若,=_____.三、解答题(共66分)19.(10分)如图,在平行四边形OABC中,已知点A、C两点的坐标为A(,),C(2,0).(1)求点B的坐标.(2)将平行四边形OABC向左平移个单位长度,求所得四边形A′B′C′O′四个顶点的坐标.(3)求平行四边形OABC的面积.20.(6分)计算:(1)(1-)+|1-2|+×.(2)(+2)÷-.21.(6分)如图,在平面直角坐标系中,四边形为正方形,已知点、,点、在第二象限内.(1)点的坐标___________;(2)将正方形以每秒个单位的速度沿轴向右平移秒,若存在某一时刻,使在第一象限内点、两点的对应点、正好落在某反比例函数的图象上,请求出此时的值以及这个反比例函数的解析式;(3)在(2)的情况下,问是否存在轴上的点和反比例函数图象上的点,使得以、、、四个点为顶点的四边形是平行四边形?若存在,请直接写出符合题意的点、的坐标;若不存在,请说明理由.22.(8分)给出下列定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.(1)如图1,四边形中,点,,,分别为边、、、的中点,则中点四边形形状是_______________.(2)如图2,点是四边形内一点,且满足,,,点,,,分别为边、、、的中点,求证:中点四边形是正方形.23.(8分)某商店经销一种双肩包,已知这种双肩包的成本价为每个30元.市场调查发现,这种双肩包每天的销售量y(单位:个)与销售单价x(单位:元)有如下关系:y=-x+60(30≤x≤60).设这种双肩包每天的销售利润为w元.(1)求w与x之间的函数解析式;(2)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种双肩包的销售单价不高于48元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少元?24.(8分)如图,直线的解析式为,且与x轴交于点D,直线经过点A、B,直线,相交于点C.求点D的坐标;求的面积.25.(10分)解方程:=-.26.(10分)解不等式组,并将其解集在数轴上表示出来.(1);(2)

参考答案一、选择题(每小题3分,共30分)1、A【解析】【分析】直接利用多边形的内角和公式进行计算即可.【详解】根据正多边形内角和公式:180°×(5﹣2)=540°,即一个五边形的内角和是540度,故选A.【点睛】本题主要考查了正多边形内角和,熟练掌握多边形的内角和公式是解题的关键.2、B【解析】

解:在矩形ABCD中,OA=OC,OB=OD,AC=BD,∴OA=OC.∵∠AOD=60°,∴△OAB是等边三角形.∴OA=AD=1.∴AC=1OA=1×1=2.故选B.3、A【解析】试题分析:∴∴或∴,而三角形两边的长分别是8和6,∵2+6=8,不符合三角形三边关系,=2舍去,∴x=10,即三角形第三边的长为10,∴三角形的周长=10+6+8=1.故选A.考点:解一元二次方程-因式分解法;三角形三边关系.点评:本题考查了利用因式分解法解一元二次方程的方法:先把方程化为一般形式,然后把方程左边因式分解,这样就把方程化为两个一元一次方程,再解一元一次方程即可.也考查了三角形三边的关系.4、C【解析】

根据这组数据是从大到小排列的,找出最中间的数即可.【详解】解:∵原数据从大到小排列是:9,9,8,8,7,6,5,∴处于最中间的数是8,∴这组数据的中位数是8.故选C.【点睛】此题考查了中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)即可.5、C【解析】

连接AE,利用△ABE≌△BCF转化线段BF得到BF+DE=AE+DE,则通过作A点关于BC对称点H,连接DH交BC于E点,利用勾股定理求出DH长即可.【详解】解:连接AE,如图1,∵四边形ABCD是正方形,∴AB=BC,∠ABE=∠BCF=90°.又BE=CF,∴△ABE≌△BCF(SAS).∴AE=BF.所以BF+DE最小值等于AE+DE最小值.作点A关于BC的对称点H点,如图2,连接BH,则A、B、H三点共线,连接DH,DH与BC的交点即为所求的E点.根据对称性可知AE=HE,所以AE+DE=DH.在Rt△ADH中,DH=∴BF+DE最小值为4.故选:C.【点睛】本题主要考查正方形的性质,轴对称的性质,全等三角形的判定及性质,勾股定理,能够作出辅助线将线段转化是解题的关键.6、D【解析】

调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【详解】A.调查某地的空气质量,由于范围广,应当使用抽样调查,故本选项错误;B.了解中学生每天的睡眠时间,由于人数多,不易全面掌握所有的人,故应当采用抽样调查;C.调查某电视剧在本地区的收视率,人数较多,不便测量,应当采用抽样调查,故本选项错误;D.了解某一天本校因病缺课的学生数,人数少,耗时短,应当采用全面调查的方式,故本选项正确。故选D.【点睛】此题考查全面调查与抽样调查,解题关键在于掌握调查方法.7、D【解析】

A、观察函数图象,可得出:每月上网时间不足25

h时,选择A方式最省钱,结论A正确;B、观察函数图象,可得出:当每月上网费用≥50元时,B方式可上网的时间比A方式多,结论B正确;C、利用待定系数法求出:当x≥25时,yA与x之间的函数关系式,再利用一次函数图象上点的坐标特征可求出当x=35时yA的值,将其与50比较后即可得出结论C正确;D、利用待定系数法求出:当x≥50时,yB与x之间的函数关系式,再利用一次函数图象上点的坐标特征可求出当x=70时yB的值,将其与120比较后即可得出结论D错误.综上即可得出结论.【详解】A、观察函数图象,可知:每月上网时间不足25

h时,选择A方式最省钱,结论A正确;B、观察函数图象,可知:当每月上网费用≥50元时,B方式可上网的时间比A方式多,结论B正确;C、设当x≥25时,yA=kx+b,将(25,30)、(55,120)代入yA=kx+b,得:,解得:,∴yA=3x-45(x≥25),当x=35时,yA=3x-45=60>50,∴每月上网时间为35h时,选择B方式最省钱,结论C正确;D、设当x≥50时,yB=mx+n,将(50,50)、(55,65)代入yB=mx+n,得:,解得:,∴yB=3x-100(x≥50),当x=70时,yB=3x-100=110<120,∴结论D错误.故选D.【点睛】本题考查了函数的图象、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,观察函数图象,利用一次函数的有关知识逐一分析四个选项的正误是解题的关键.8、C【解析】

各项化简后,利用同类二次根式定义判断即可.【详解】A、原式=32,不符合题意;B、原式=24C、原式=23,符合题意;D、原式=22故选:C.【点睛】本题考查了同类二次根式的定义,熟练掌握同类二次根式的定义是解答本题的关键.化成最简二次根式后,如果被开方式相同,那么这几个二次根式叫做同类二次根式.9、C【解析】

根据题意作图,利用菱形与中位线的性质即可求解.【详解】如图,E、F、G、H是菱形ABCD各边的中点,连接EF、FG、GH、EH,判断四边形EFGH的形状,∵E,F是中点,∴EF是△ABC的中位线,∴EH∥BD,同理,EF∥AC,GH∥AC,FG∥BD,∴EH∥FG,EF∥GH,则四边形EFGH是平行四边形,又∵AC⊥BD,∴EF⊥EH,即∠FEH=90°∴平行四边形EFGH是矩形,故答案为:C.【点睛】此题主要考查中点四边形的判定,解题的关键是熟知菱形的性质以及矩形的判定.10、C【解析】

根据中心对称图形的定义:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形与另一个图形重合,那么就说明这两个图形的形状关于这个点成中心对称,逐一判定即可.【详解】A选项,是轴对称图形,不符合题意;B选项,是轴对称图形,不符合题意;C选项,是中心对称图形,符合题意;D选项,是轴对称图形,不符合题意;故选:C.【点睛】此题主要考查对中心对称图形的理解,熟练掌握,即可解题.二、填空题(每小题3分,共24分)11、14【解析】

根据中位数的意义,排序找中间位置的数或中间两个数的平均数即可.【详解】15名学生制作手工作品所需时间中排在第8位的是14分钟,因此中位数是14分钟故答案为14.【点睛】本题考查中位数的概念和求法,将数据从小到大排序找中间位置的数或中间两个数的平均数,理解意义掌握方法是关键.12、1.【解析】

先通分,再化简,最后代值即可得出结论.【详解】∵x=2018,∴====x﹣1=2018﹣1=1,故答案为:1.【点睛】此题主要考查了分式的加减,找出最简公分母是解本题的关键.13、1【解析】

根据轴对称图形的概念分别找出各个能成轴对称图形的小方格即可.【详解】解:如图所示,有1个位置使之成为轴对称图形.

故答案为:1.【点睛】本题考查利用轴对称设计图案,关键是掌握轴对称图形沿某条直线折叠,直线两旁的部分能完全重合.14、1【解析】

两直线平行,则两比例系数相等,据此可以求解.【详解】解:直线与直线平行,,故答案为:1.【点睛】本题考查了两条直线相交或平行问题,解题的关键是熟知两直线平行时两比例系数相等.15、1【解析】

根据含30°角的直角三角形的性质求出AB,再根据直角三角形斜边上的中线的性质求出CD即可.【详解】解:∵Rt△ABC中,∠ACB=90°,∠A=30°,BC=1cm,∴AB=1BC=4cm,∵Rt△ABC中,∠ACB=90°,点D是AB的中点,∴CD=AB=1cm.故答案为:1.【点睛】本题考查含30°角的直角三角形的性质和直角三角形斜边上的中线的性质,能灵活运用定理进行推理是解答此题的关键.16、【解析】

根据勾股定理求出AB的长度,然后由直角三角形斜边上的中线的性质回答问题.【详解】解:在Rt△ABO中,AO=12,BO=5,∴,∵直角三角形斜边上的中线等于斜边的一半,∴AB上的中点到墙角O的距离总是定值,此定值为.故答案为:.【点睛】本题考查了勾股定理的应用,以及斜边上的中线等于斜边的一半,解题的关键是在直角三角形中弄清直角边和斜边.17、18.2【解析】

由于吸管、圆柱形杯内部底面直径与杯壁正好构成直角三角形,故可先利用勾股定理求出AC的长,进而可得出结论.【详解】解:如图;杯内的吸管部分长为AC,杯高AB=12cm,杯底直径BC=5cm;

Rt△ABC中,AB=12cm,BC=5cm;由勾股定理得:;故吸管的长度最少要:13+5.2=18.2(cm).故答案为:18.2.【点睛】本题考查勾股定理在实际生活中的运用,解答此类题目的关键是构造出直角三角形,再利用勾股定理解答.18、120°【解析】

根据平行四边形对角相等求解.【详解】平行四边形ABCD中,∠A=∠C,又,∴∠A=120°,故填:120°.【点睛】此题主要考查平行四边形的性质,解题的关键是熟知平行四边形对角相等.三、解答题(共66分)19、(1)点B坐标是(3,);(2)A′(O,)、B′(2,)、C′(,0),O′(-,0);(3)6.【解析】分析:(1)根据平行四边形的性质AB=OC=2,由此即可解决问题.

(2)根据向左平移纵坐标不变,横坐标减去即可.

(3)根据平行四边形的面积公式计算即可.详解:(1)点B坐标是(3,);(2)向左平移个单位长度后,各点的纵坐标不变,横坐标都减少,所以A′(O,)、B′(2,)、C′(,0),O′(-,0).(3)平行四边形的面积为2·=2()2=2×3=6.点睛:本题考查四边形综合题、坐标与点的位置关系、平行四边形的性质等知识,解题的关键是熟练掌握平行四边形的性质,记住平行四边形的面积等于底乘高,属于中考常考题型.20、.(1)3+2;(2)2.【解析】

(1)先去绝对值和乘法,再计算加减即可;(2)先计算除法和化简二次根式,再相加减即可;【详解】(1)原式=1-+2-1+2=+2(2)原式=.=2.【点睛】考查了二次根式的混合运算,解题关键熟记运算顺序和法则.21、(1)点坐标为;(2),;(3)存在,,或,或,【解析】

(1)证明△DFA≌△AEB(AAS),则DF=AE=3,BE=AF=1,即可求解;(2)t秒后,点D′(−7+2t,3)、B′(−3+2t,1),则k=(−7+2t)×3=(−3+2t)×1,即可求解;(3)分为平行四边形的一条边时和为平行四边形对角线时两种情况,分别求解即可.【详解】解:(1)过点、分别作轴、轴交于点、,,,,又,,,,,点坐标为;(2)秒后,点、,则,解得:,则,(3)存在,理由:设:点,点,,①在第一象限,且为平行四边形的一条边时,图示平行四边形,点向左平移个单位、向上平移个单位得到点,同理点向左平移个单位、向上平移个单位为得到点,即:,,,解得:,,,故点、点;②在第一象限,且当为平行四边形对角线时,图示平行四边形,中点坐标为,该中点也是的中点,即:,,,解得:,,,故点、;③在第三象限,且当为平行四边形的一条边时,图示平行四边形,点向左平移个单位、向上平移个单位得到点,同理点向右平移个单位、向下平移个单位为得到点,即:,,,解得:,,,故点、点;综上:,或,或,【点睛】本题考查的是反比例函数综合运用,涉及到三角形全等、图形平移等知识点,其中(3),要通过画图确定图形可能的位置再求解,避免遗漏.22、(1)平行四边形;(2)见解析【解析】

(1)如图1中,连接BD,根据三角形中位线定理只要证明EH∥FG,EH=FG即可.(2)首先证明四边形EFGH是菱形.再证明∠EHG=90°.利用△APC≌△BPD,得∠ACP=∠BDP,即可证明∠COD=∠CPD=90°,再根据平行线的性质即可证明.【详解】(1)证明:如图1中,连接BD.∵点E,H分别为边AB,DA的中点,∴EH∥BD,EH=BD,∵点F,G分别为边BC,CD的中点,∴FG∥BD,FG=BD,∴EH∥FG,EH=GF,∴中点四边形EFGH是平行四边形.故答案为平行四边形;(2)证明:如图2中,连接,.∵,∴即,在和中,,∴,∴∵点,,分别为边,,的中点,∴,,由(1)可知,四边形是平行四边形,∴四边形是菱形.如图设与交于点.与交于点,与交于点.∵,∴,∵,∴∵,,∴,∵四边形是菱形,∴四边形是正方形.【点睛】本题考查平行四边形的判定和性质、全等三角形的判定和性质、菱形的判定和性质、正方形的判定和性质等知识,解题的关键是灵活应用三角形中位线定理,学会添加常用辅助线.23、(1)w=-x2+90x-1800;(2)当x=45时,w有最大值,最大值是225(3)该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为40元【解析】试题分析:(1)根据销售利润=单个利润×销售量,列出式子整理后即可得;(2)由(1)中的函数解析式,利用二次函数的性质即可得;(3)将w=200代入(1)中的函数解析式,解方程后进行讨论即

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论