2.3.2一元二次方程根的判别式_第1页
2.3.2一元二次方程根的判别式_第2页
2.3.2一元二次方程根的判别式_第3页
2.3.2一元二次方程根的判别式_第4页
2.3.2一元二次方程根的判别式_第5页
已阅读5页,还剩26页未读 继续免费阅读

2.3.2一元二次方程根的判别式.doc 免费下载

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第1页(共29页)一元二次方程根的判别式1.(2016•静安区一模)下列方程中,有实数解的是()A.x2﹣x+1=0 B.=1﹣x C.=0 D.=1【考点】根的判别式;无理方程;分式方程的解.【分析】A、根据△的值判断即可,B、根据二次根式的意义判断即可;C、根据分式方程的解的定义判断即可;D、根据分式方程的解的定义判断即可.【解答】解:A、∵△=1﹣4=﹣3<0,∴原方程无实数根,B、当1﹣x<0,即x>1时,原方程无实数根,C、当x2﹣x=0,即x=1,或x=0时,原方程无实数根,D、∵=1,∴x=﹣1.故选D.【点评】本题考查了一元二次方程的根得判别式,无理方程的解,分式方程的解,正确的解方程是解题的关键.2.(2015•德州)若一元二次方程x2+2x+a=0的有实数解,则a的取值范围是()A.a<1 B.a≤4 C.a≤1 D.a≥1【考点】根的判别式.【分析】若一元二次方程x2+2x+a=0的有实数解,则根的判别式△≥0,据此可以列出关于a的不等式,通过解不等式即可求得a的值.【解答】解:因为关于x的一元二次方程有实根,所以△=b2﹣4ac=4﹣4a≥0,解之得a≤1.故选C.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.3.(2015•锦州)一元二次方程x2﹣2x﹣1=0的根的情况为()A.有两个相等的实数根 B.有两个不相等的实数根C.只有一个实数根 D.没有实数根【考点】根的判别式.【专题】计算题.【分析】先计算判别式得到△=(﹣2)2﹣4×(﹣1)=8>0,然后根据判别式的意义判断方程根的情况.【解答】解:根据题意△=(﹣2)2﹣4×(﹣1)=8>0,所以方程有两个不相等的实数根.故选:B.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.4.(2015•凉山州)关于x的一元二次方程(m﹣2)x2+2x+1=0有实数根,则m的取值范围是()A.m≤3 B.m<3 C.m<3且m≠2 D.m≤3且m≠2【考点】根的判别式;一元二次方程的定义.【分析】根据一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac的意义得到m﹣2≠0且△≥0,即22﹣4×(m﹣2)×1≥0,然后解不等式组即可得到m的取值范围.【解答】解:∵关于x的一元二次方程(m﹣2)x2+2x+1=0有实数根,∴m﹣2≠0且△≥0,即22﹣4×(m﹣2)×1≥0,解得m≤3,∴m的取值范围是m≤3且m≠2.故选:D.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.5.(2015•成都)关于x的一元二次方程kx2+2x+1=0有两个不相等的实数根,则k的取值范围是()A.k>﹣1 B.k≥﹣1 C.k≠0 D.k<1且k≠0【考点】根的判别式;一元二次方程的定义.【分析】在判断一元二次方程根的情况的问题中,必须满足下列条件:(1)二次项系数不为零;(2)在有不相等的实数根时,必须满足△=b2﹣4ac>0【解答】解:依题意列方程组,解得k<1且k≠0.故选D.【点评】本题考查了一元二次方程根的判别式的应用.切记不要忽略一元二次方程二次项系数不为零这一隐含条件.6.(2015•泸州)若关于x的一元二次方程x2﹣2x+kb+1=0有两个不相等的实数根,则一次函数y=kx+b的大致图象可能是()A. B. C. D.【考点】根的判别式;一次函数的图象.【分析】根据一元二次方程x2﹣2x+kb+1=0有两个不相等的实数根,得到判别式大于0,求出kb的符号,对各个图象进行判断即可.【解答】解:∵x2﹣2x+kb+1=0有两个不相等的实数根,∴△=4﹣4(kb+1)>0,解得kb<0,A.k>0,b>0,即kb>0,故A不正确;B.k>0,b<0,即kb<0,故B正确;C.k<0,b<0,即kb>0,故C不正确;D.k>0,b=0,即kb=0,故D不正确;故选:B.【点评】本题考查的是一元二次方程根的判别式和一次函数的图象,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.7.(2015•滨州)一元二次方程4x2+1=4x的根的情况是()A.没有实数根 B.只有一个实数根C.有两个相等的实数根 D.有两个不相等的实数根【考点】根的判别式.【分析】先求出△的值,再判断出其符号即可.【解答】解:原方程可化为:4x2﹣4x+1=0,∵△=42﹣4×4×1=0,∴方程有两个相等的实数根.故选C.【点评】本题考查的是根的判别式,熟知一元二次方程ax2+bx+c=0(a≠0)的根与△的关系是解答此题的关键.8.(2015•温州)若关于x的一元二次方程4x2﹣4x+c=0有两个相等实数根,则c的值是()A.﹣1 B.1 C.﹣4 D.4【考点】根的判别式.【分析】根据判别式的意义得到△=42﹣4×4c=0,然后解一次方程即可.【解答】解:∵一元二次方程4x2﹣4x+c=0有两个相等实数根,∴△=42﹣4×4c=0,∴c=1,故选B.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.9.(2015•重庆)已知一元二次方程2x2﹣5x+3=0,则该方程根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.两个根都是自然数 D.无实数根【考点】根的判别式.【分析】判断上述方程的根的情况,只要看根的判别式△=b2﹣4ac的值的符号就可以了.【解答】解:∵a=2,b=﹣5,c=3,∴△=b2﹣4ac=(﹣5)2﹣4×2×3=1>0,∴方程有两个不相等的实数根.故选:A.【点评】此题主要考查了一元二次方程根的判别式,掌握一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根,是解决问题的关键.10.(2015•珠海)一元二次方程x2+x+=0的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.无实数根 D.无法确定根的情况【考点】根的判别式.【分析】求出△的值即可判断.【解答】解:一元二次方程x2+x+=0中,∵△=1﹣4×1×=0,∴原方程由两个相等的实数根.故选B.【点评】本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.11.(2015•长春)方程x2﹣2x+3=0的根的情况是()A.有两个相等的实数根 B.只有一个实数根C.没有实数根 D.有两个不相等的实数根【考点】根的判别式.【分析】把a=1,b=﹣2,c=3代入△=b2﹣4ac进行计算,然后根据计算结果判断方程根的情况.【解答】解:∵a=1,b=﹣2,c=3,∴△=b2﹣4ac=(﹣2)2﹣4×1×3=﹣8<0,所以方程没有实数根.故选C.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2﹣4ac.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.12.(2015•连云港)已知关于x的方程x2﹣2x+3k=0有两个不相等的实数根,则k的取值范围是()A.k< B.k> C.k<且k≠0 D.k>且k≠0【考点】根的判别式.【专题】计算题.【分析】根据方程有两个不相等的实数根,得到根的判别式大于0,即可求出k的范围.【解答】解:∵方程x2﹣2x+3k=0有两个不相等的实数根,∴△=4﹣12k>0,解得:k<.故选A.【点评】此题考查了根的判别式,熟练掌握根的判别式的意义是解本题的关键.13.(2015•达州)方程(m﹣2)x2﹣x+=0有两个实数根,则m的取值范围()A.m> B.m≤且m≠2 C.m≥3 D.m≤3且m≠2【考点】根的判别式;一元二次方程的定义.【专题】计算题.【分析】根据一元二次方程的定义、二次根式有意义的条件和判别式的意义得到,然后解不等式组即可.【解答】解:根据题意得,解得m≤且m≠2.故选B.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.14.(2015•东莞)若关于x的方程x2+x﹣a+=0有两个不相等的实数根,则实数a的取值范围是()A.a≥2 B.a≤2 C.a>2 D.a<2【考点】根的判别式.【分析】根据判别式的意义得到△=12﹣4(﹣a+)>0,然后解一元一次不等式即可.【解答】解:根据题意得△=12﹣4(﹣a+)>0,解得a>2.故选C.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.15.(2015•眉山)下列一元二次方程中有两个不相等的实数根的方程是()A.(x﹣1)2=0 B.x2+2x﹣19=0 C.x2+4=0 D.x2+x+l=0【考点】根的判别式.【分析】根据一元二次方程根的判别式,分别计算△的值,进行判断即可.【解答】解:A、△=0,方程有两个相等的实数根;B、△=4+76=80>0,方程有两个不相等的实数根;C、△=﹣16<0,方程没有实数根;D、△=1﹣4=﹣3<0,方程没有实数根.故选:B.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.16.(2015•安顺)若一元二次方程x2﹣2x﹣m=0无实数根,则一次函数y=(m+1)x+m﹣1的图象不经过第()象限.A.四 B.三 C.二 D.一【考点】根的判别式;一次函数图象与系数的关系.【分析】根据判别式的意义得到△=(﹣2)2+4m<0,解得m<﹣1,然后根据一次函数的性质可得到一次函数y=(m+1)x+m﹣1图象经过的象限.【解答】解:∵一元二次方程x2﹣2x﹣m=0无实数根,∴△<0,∴△=4﹣4(﹣m)=4+4m<0,∴m<﹣1,∴m+1<1﹣1,即m+1<0,m﹣1<﹣1﹣1,即m﹣1<﹣2,∴一次函数y=(m+1)x+m﹣1的图象不经过第一象限,故选D.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一次函数图象与系数的关系.17.(2015•烟台)等腰三角形边长分别为a,b,2,且a,b是关于x的一元二次方程x2﹣6x+n﹣1=0的两根,则n的值为()A.9 B.10 C.9或10 D.8或10【考点】根的判别式;一元二次方程的解;等腰直角三角形.【分析】由三角形是等腰三角形,得到①a=2,或b=2,②a=b①当a=2,或b=2时,得到方程的根x=2,把x=2代入x2﹣6x+n﹣1=0即可得到结果;②当a=b时,方程x2﹣6x+n﹣1=0有两个相等的实数根,由△=(﹣6)2﹣4(n﹣1)=0可的结果.【解答】解:∵三角形是等腰三角形,∴①a=2,或b=2,②a=b两种情况,①当a=2,或b=2时,∵a,b是关于x的一元二次方程x2﹣6x+n﹣1=0的两根,∴x=2,把x=2代入x2﹣6x+n﹣1=0得,22﹣6×2+n﹣1=0,解得:n=9,当n=9,方程的两根是2和4,而2,4,2不能组成三角形,故n=9不合题意,②当a=b时,方程x2﹣6x+n﹣1=0有两个相等的实数根,∴△=(﹣6)2﹣4(n﹣1)=0解得:n=10,故选B.【点评】本题考查了等腰直角三角形的性质,一元二次方程的根,一元二次方程根的判别式,注意分类讨论思想的应用.18.(2015•贵港)若关于x的一元二次方程(a﹣1)x2﹣2x+2=0有实数根,则整数a的最大值为()A.﹣1 B.0 C.1 D.2【考点】根的判别式;一元二次方程的定义.【分析】由关于x的一元二次方程(a﹣1)x2﹣2x+2=0有实数根,则a﹣1≠0,且△≥0,即△=(﹣2)2﹣8(a﹣1)=12﹣8a≥0,解不等式得到a的取值范围,最后确定a的最大整数值.【解答】解:∵关于x的一元二次方程(a﹣1)x2﹣2x+2=0有实数根,∴△=(﹣2)2﹣8(a﹣1)=12﹣8a≥0且a﹣1≠0,∴a≤且a≠1,∴整数a的最大值为0.故选:B.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式△=b2﹣4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义和不等式的特殊解.19.(2015•宁德)一元二次方程2x2+3x+1=0的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.没有实数根 D.无法确定【考点】根的判别式.【分析】先求出△的值,再判断出其符号即可.【解答】解:∵△=32﹣4×2×1=1>0,∴方程有两个不相等的实数根.故选A.【点评】本题考查的是根的判别式,熟知一元二次方程ax2+bx+c=0(a≠0)的根与△的关系是解答此题的关键.20.(2015•云南)下列一元二次方程中,没有实数根的是()A.4x2﹣5x+2=0 B.x2﹣6x+9=0 C.5x2﹣4x﹣1=0 D.3x2﹣4x+1=0【考点】根的判别式.【分析】分别计算出每个方程的判别式即可判断.【解答】解:A、∵△=25﹣4×2×4=﹣7<0,∴方程没有实数根,故本选项正确;B、∵△=36﹣4×1×4=0,∴方程有两个相等的实数根,故本选项错误;C、∵△=16﹣4×5×(﹣1)=36>0,∴方程有两个相等的实数根,故本选项错误;D、∵△=16﹣4×1×3=4>0,∴方程有两个相等的实数根,故本选项错误;故选A.【点评】本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.21.(2015•株洲)有两个一元二次方程M:ax2+bx+c=0;N:cx2+bx+a=0,其中a•c≠0,a≠c.下列四个结论中,错误的是()A.如果方程M有两个相等的实数根,那么方程N也有两个相等的实数根B.如果方程M的两根符号相同,那么方程N的两根符号也相同C.如果5是方程M的一个根,那么是方程N的一个根D.如果方程M和方程N有一个相同的根,那么这个根必是x=1【考点】根的判别式;一元二次方程的解;根与系数的关系.【专题】压轴题.【分析】利用根的判别式判断A;利用根与系数的关系判断B;利用一元二次方程的解的定义判断C与D.【解答】解:A、如果方程M有两个相等的实数根,那么△=b2﹣4ac=0,所以方程N也有两个相等的实数根,结论正确,不符合题意;B、如果方程M的两根符号相同,那么方程N的两根符号也相同,那么△=b2﹣4ac≥0,>0,所以a与c符号相同,>0,所以方程N的两根符号也相同,结论正确,不符合题意;C、如果5是方程M的一个根,那么25a+5b+c=0,两边同时除以25,得c+b+a=0,所以是方程N的一个根,结论正确,不符合题意;D、如果方程M和方程N有一个相同的根,那么ax2+bx+c=cx2+bx+a,(a﹣c)x2=a﹣c,由a≠c,得x2=1,x=±1,结论错误,符合题意;故选:D.【点评】本题考查了一元二次方程根的情况与判别式△的关系:△>0⇔方程有两个不相等的实数根;△=0⇔方程有两个相等的实数根;△<0⇔方程没有实数根.也考查了根与系数的关系,一元二次方程的解的定义.22.(2015•河北)若关于x的方程x2+2x+a=0不存在实数根,则a的取值范围是()A.a<1 B.a>1 C.a≤1 D.a≥1【考点】根的判别式.【分析】根据根的判别式得出b2﹣4ac<0,代入求出不等式的解集即可得到答案.【解答】解:∵关于x的方程x2+2x+a=0不存在实数根,∴b2﹣4ac=22﹣4×1×a<0,解得:a>1.故选B.【点评】此题主要考查了一元二次方程根的情况与判别式,关键是掌握一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.23.(2015•湘西州)下列方程中,没有实数根的是()A.x2﹣4x+4=0 B.x2﹣2x+5=0 C.x2﹣2x=0 D.x2﹣2x﹣3=0【考点】根的判别式.【分析】利用判别式分别判定即可得出答案.【解答】解:A、x2﹣4x+4=0,△=16﹣16=0有相同的根;B、x2﹣2x+5=0,△=4﹣20<0没有实数根;C、x2﹣2x=0,△=4﹣0>0有两个不等实数根;D、x2﹣2x﹣3=0,△=4+12>0有两个不等实数根.故选:B.【点评】本题主要考查了根的判别式,解题的关键是熟记判别式的公式.24.(2015•抚顺)下列一元二次方程有两个相等实数根的是()A.x2﹣2x+1=0 B.2x2﹣x+1=0 C.4x2﹣2x﹣3=0 D.x2﹣6x=0【考点】根的判别式.【分析】根据一元二次方程根的判别式判断即可.【解答】解:A、∵△=4﹣4=0,∴方程x2﹣2x+1=0有两个相等实数根;B、∵△=1﹣4×2<0,∴方程2x2﹣x+1=0无实数根;C、∵△=4+4×4×3=52>0,∴方程4x2﹣2x﹣3=0有两个不相等实数根;D、∵△=36>0,∴方程x2﹣6x=0有两个不相等实数根;故选A.【点评】本题考查了一元二次方程根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.25.(2015•张家界)若关于x的一元二次方程kx2﹣4x+3=0有实数根,则k的非负整数值是()A.1 B.0,1 C.1,2 D.1,2,3【考点】根的判别式;一元二次方程的定义.【分析】根据方程有实数根,得到根的判别式的值大于等于0列出关于k的不等式,求出不等式的解集得到k的范围,即可确定出k的非负整数值.【解答】解:根据题意得:△=16﹣12k≥0,且k≠0,解得:k≤,则k的非负整数值为1.故选:A.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2﹣4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根26.(2015•荆门)若关于x的一元二次方程x2﹣4x+5﹣a=0有实数根,则a的取值范围是()A.a≥1 B.a>1 C.a≤1 D.a<1【考点】根的判别式.【分析】根据关于x的一元二次方程x2﹣4x+5﹣a=0有实数根,得出△=16﹣4(5﹣a)≥0,从而求出a的取值范围.【解答】解:∵关于x的一元二次方程x2﹣4x+5﹣a=0有实数根,∴△=(﹣4)2﹣4(5﹣a)≥0,∴a≥1.故选A.【点评】此题主要考查了一元二次方程根的情况与判别式,关键是掌握一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.27.(2015•河池)下列方程有两个相等的实数根的是()A.x2+x+1=0 B.4x2+2x+1=0 C.x2+12x+36=0 D.x2+x﹣2=0【考点】根的判别式.【分析】由方程有两个相等的实数根,得到△=0,于是根据△=0判定即可.【解答】解:A、方程x2+x+1=0,∵△=1﹣4<0,方程无实数根;B、方程4x2+2x+1=0,∵△=4﹣16<0,方程无实数根;C、方程x2+12x+36=0,∵△=144﹣144=0,方程有两个相等的实数根;D、方程x2+x﹣2=0,∵△=1+8>0,方程有两个不相等的实数根;故选C.【点评】本题考查了一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根28.(2015•攀枝花)关于x的一元二次方程(m﹣2)x2+(2m+1)x+m﹣2=0有两个不相等的正实数根,则m的取值范围是()A.m> B.m>且m≠2 C.﹣<m<2 D.<m<2【考点】根的判别式;一元二次方程的定义.【专题】计算题.【分析】根据一元二次方程的定义和根的判别式的意义得到m﹣2≠0且△=(2m+1)2﹣4(m﹣2)(m﹣2)>0,解得m>且m≠2,再利用根与系数的关系得到﹣>0,则m﹣2<0时,方程有正实数根,于是可得到m的取值范围为<m<2.【解答】解:根据题意得m﹣2≠0且△=(2m+1)2﹣4(m﹣2)(m﹣2)>0,解得m>且m≠2,设方程的两根为a、b,则a+b=﹣>0,ab==1>0,而2m+1>0,∴m﹣2<0,即m<2,∴m的取值范围为<m<2.故选D.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.也考查了根与系数的关系.29.(2015•毕节市)若关于x的一元二次方程x2+(2k﹣1)x+k2﹣1=0有实数根,则k的取值范围是()A.k≥ B.k> C.k< D.k≤【考点】根的判别式.【专题】计算题.【分析】先根据判别式的意义得到△=(2k﹣1)2﹣4(k2﹣1)≥0,然后解关于k的一元一次不等式即可.【解答】解:根据题意得△=(2k﹣1)2﹣4(k2﹣1)≥0,解得k≤.故选D.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.30.(2015•宁夏)关于x的一元二次方程x2+x+m=0有实数根,则m的取值范围是()A.m≥ B.m≤ C.m≥ D.m≤【考点】根的判别式.【分析】方程有实数根,则△≥0,建立关于m的不等式,求出m的取值范围.【解答】解:由题意知,△=1﹣4m≥0,∴m≤,故选D.【点评】本题考查了根的判别式,总结:1、一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.1.(2015•台湾)判断一元二次方程式x2﹣8x﹣a=0中的a为下列哪一个数时,可使得此方程式的两根均为整数?()A.12 B.16 C.20 D.24【考点】根的判别式.【分析】根据题意得到△=64+4a,然后把四个选项中a的值一一代入得到是正整数即可得出答案.【解答】解:∵一元二次方程式x2﹣8x﹣a=0的两个根均为整数,∴△=64+4a,△的值若可以被开平方即可,A、△=64+4×12=102,=,此选项不对;B、△=64+4×16=128,,此选项不对;C、△=64+4×20=144,=12,此选项正确;D、△=64+4×24=160,,此选项不对,故选:C.【点评】本题考查了利用一元二次方程根的判别式(△=b2﹣4ac)判断方程的根的情况.在一元二次方程ax2+bx+c=0(a≠0)中,当△>0时,方程有两个不相等的两个实数根.2.(2015•淄博)若a满足不等式组,则关于x的方程(a﹣2)x2﹣(2a﹣1)x+a+=0的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.没有实数根 D.以上三种情况都有可能【考点】根的判别式;一元一次方程的解;解一元一次不等式组.【分析】求出a的取值范围,表示出已知方程根的判别式,判断得到根的判别式的值小于0,可得出方程没有实数根.【解答】解:解不等式组得a<﹣3,∵△=(2a﹣1)2﹣4(a﹣2)(a+)=2a+5,∵a<﹣3,∴△=2a+5<0,∴方程(a﹣2)x2﹣(2a﹣1)x+a+=0没有实数根,故选C.【点评】此题考查了解一元一次不等式组,一元二次方程根的判别式,根的判别式的值大于0,方程有两个不相等的实数根;根的判别式的值等于0时,方程有两个相等的实数根;根的判别式的值小于0时,方程无实数根.3.(2015•玉溪模拟)一元二次方程x2﹣2x+3=0的根的情况是()A.没有实数根 B.有两个相等的实数根C.有两个不相等的实数根 D.有两个实数根【考点】根的判别式.【专题】计算题.【分析】根据根的判别式△=b2﹣4ac的符号来判定一元二次方程x2﹣2x+3=0的根的情况.【解答】解:∵一元二次方程x2﹣2x+3=0的二次项系数a=1,一次项系数b=﹣2,常数项c=3,∴△=b2﹣4ac=4﹣12=﹣8<0,∴原方程无实数根.故选A.【点评】本题考查了根的判别式,解题的关键是根据根的判别式的情况决定一元二次方程根的情况.4.(2015•建阳市模拟)已知关于x的一元二次方程mx2+2x﹣1=0有两个不相等的实数根,则m的取值范围是()A.m<﹣1 B.m>1 C.m<1且m≠0 D.m>﹣1且m≠0【考点】根的判别式;一元二次方程的定义.【分析】由关于x的一元二次方程mx2+2x﹣1=0有两个不相等的实数根,根据一元二次方程的定义和根的判别式的意义可得m≠0且△>0,即22﹣4•m•(﹣1)>0,两个不等式的公共解即为m的取值范围.【解答】解:∵关于x的一元二次方程mx2+2x﹣1=0有两个不相等的实数根,∴m≠0且△>0,即22﹣4•m•(﹣1)>0,解得m>﹣1,∴m的取值范围为m>﹣1且m≠0.∴当m>﹣1且m≠0时,关于x的一元二次方程mx2+2x﹣1=0有两个不相等的实数根.故选D.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△<0,方程有两个相等的实数根;当△=0,方程没有实数根;也考查了一元二次方程的定义.5.(2015•上饶校级模拟)关于x的一元二次方程kx2﹣6x+9=0有两个不相等的实数根,那么k的取值范围是()A.k<1 B.k≠0 C.k<1且k≠0 D.k>1【考点】根的判别式;一元二次方程的定义.【分析】因为关于x的一元二次方程kx2﹣6x+9=0有两个不相等的实数根,所以k≠0且△=b2﹣4ac>0,建立关于k的不等式组,解得k的取值范围即可.【解答】解:∵关于x的一元二次方程kx2﹣6x+9=0有两个不相等的实数根,∴k≠0,且△=b2﹣4ac=36﹣36k>0,解得k<1且k≠0.故答案为k<1且k≠0.故选:C.【点评】本题考查了一元二次方程根的判别式的应用.切记不要忽略一元二次方程二次项系数不为零这一隐含条件.一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.6.(2015•诏安县校级模拟)方程x2+2x﹣3=0的两根的情况是()A.没有实数根 B.有两个不相等的实数根C.有两个相同的实数根 D.不能确定【考点】根的判别式.【分析】判断上述方程的根的情况,只要看根的判别式△=b2﹣4ac的值的符号就可以了.【解答】解:∵a=1,b=2,c=﹣3∴△=b2﹣4ac=22﹣4×1×(﹣3)=16>0∴方程有两个不等的实数根故选B【点评】总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.7.(2015•梅列区校级质检)下列方程中,有两个不相等实数根的是()A.x2﹣4x+4=0 B.x2+3x﹣1=0 C.x2+x+1=0 D.x2﹣2x+3=0【考点】根的判别式.【专题】计算题.【分析】利用一元二次方程的根的判别式计算分别求出判别式的值,当判别式的值大于0时,方程有两个不相等的实数根.【解答】解:A、x2﹣4x+4=0,△=(﹣4)2﹣4×1×4=0,方程有两相等实数根.B、x2+3x﹣1=0,△=32﹣4×1×(﹣1)=13>0,方程有两个不相等的实数根.C、x2+x+1=0,△=12﹣4×1×1=﹣3<0,方程没有实数根.D、x2﹣2x+3=0,△=(﹣2)2﹣4×1×3=﹣8<0,方程没有实数根.故选B.【点评】本题考查的是一元二次方程根的判别式,计算判别式的值,判断方程的根的情况.8.(2015•鄂尔多斯一模)关于x的方程x2+2kx+k﹣1=0的根的情况描述正确的是()A.k为任何实数,方程都没有实数根B.k为任何实数,方程都有两个不相等的实数根C.k为任何实数,方程都有两个相等的实数根D.根据k的取值不同,方程根的情况分为没有实数根、有两个不相等的实数根和有两个相等的实数根三种【考点】根的判别式.【分析】先计算判别式的值得到△=(2k﹣1)2+3,根据非负数的性质得△>0,然后根据判别式的意义进行判断.【解答】解:△=4k2﹣4(k﹣1)=(2k﹣1)2+3,∵(2k﹣1)2≥0,∴(2k﹣1)2+3>0,即△>0,∴方程有两个不相等的实数根.故选B.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.9.(2015•东河区一模)关于x的一元二次方程kx2+3x﹣1=0有实数根,则k的取值范围是()A.k≤﹣ B.k≤﹣且k≠0 C.k≥﹣ D.k≥﹣且k≠0【考点】根的判别式.【分析】根据方程根的情况可以判定其根的判别式的取值范围,进而可以得到关于k的不等式,解得即可,同时还应注意二次项系数不能为0.【解答】解:∵关于x的一元二次方程kx2+3x﹣1=0有实数根,∴△=b2﹣4ac≥0,即:9+4k≥0,解得:k≥﹣,∵关于x的一元二次方程kx2+3x﹣1=0中k≠0,则k的取值范围是k≥﹣且k≠0.故选D.【点评】本题考查了根的判别式,解题的关键是了解根的判别式如何决定一元二次方程根的情况.10.(2015•杭州模拟)若关于x的一元二次方程(k﹣1)x2﹣(2k+1)x+k=0有两个不相等的实数根,则k的取值范围是()A. B.且k≠1 C. D.k≥且k≠0【考点】根的判别式.【专题】计算题;方程思想.【分析】一元二次方程(k﹣1)x2﹣(2k+1)x+k=0有两个不相等的实数根的条件是:①二次项系数不等于0;②根的判别式△=b2﹣4ac>0.【解答】解:∵关于x的一元二次方程(k﹣1)x2﹣(2k+1)x+k=0有两个不相等的实数根,∴△=[﹣(2k+1)]2﹣4(k﹣1)•k=8k+1>0,即8k+1>0,解得k>﹣;又∵k﹣1≠0,∴k的取值范围是:k>﹣且k≠1.故选B.【点评】本题考查了一元二次方程的根的判别式.一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.11.(2011春•阜阳校级期中)下列方程中,①x2﹣3x﹣4=0;②y2+9=6y;③5y2﹣7y=0;④有两个不相等的实数根的方程个数为()A.1个 B.2个 C.3个 D.4个【考点】根的判别式.【分析】根据△=b2﹣4ac>0时,方程有两个不相等的实数根;b2﹣4ac=0,此方程有两个相等的实数根;b2﹣4ac<0此方程没有实数根;即可得出答案.【解答】解:①x2﹣3x﹣4=0;∵b2﹣4ac=9﹣4×1×(﹣4)=25>0,∴此方程有两个不相等的实数根;②y2+9=6y;∴y2﹣6y+9=0,∵b2﹣4ac=36﹣36=0,∴此方程有两个相等的实数根;③5y2﹣7y=0;∵b2﹣4ac=49>0,∴此方程有两个不相等的实数根;④,∴x2﹣2x+2=0,∵b2﹣4ac=8﹣8=0,∴此方程有两个相等的实数根;∴有两个不相等的实数根的方程个数为①③.故选B.【点评】此题主要考查了根的判别式,正确的记忆一元二次方程根的判别式是解决问题的关键.12.(2011秋•云霄县校级期中)下列说法正确的是()A.方程2x2﹣3x+1=0有两个相等的实数根B.方程x2﹣x+2=0没有实数根C.方程x2﹣2x=﹣1有两个不相等的实数根D.方程x2﹣x=0只有一个实数根【考点】根的判别式.【分析】判断上述方程的根的情况,只要看根的判别式△=b2﹣4ac的值的符号就可以了.【解答】解:A、∵△=b2﹣4ac=(﹣3)2﹣4×1×2=1>0,∴方程2x2﹣3x+1=0有两个不相等的实数根,故本选项错误;B、∵△=b2﹣4ac=(﹣1)2﹣4×1×2=﹣7<0,∴方程x2﹣x+2=0没有实数根,故本选项正确;C、∵△=b2﹣4ac=(﹣2)2﹣4×1×2=﹣4<0,∴方程x2﹣2x=﹣1没有实数根,故本选项错误;D、∵△=b2﹣4ac=(﹣1)2﹣4×1×0=1>0,∴方程x2﹣x=0有两个不相等的实数根,故本选项错误;故选B.【点评】此题考查了根的判别式,掌握一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根是本题的关键.13.(2010春•慈溪市期中)方程ax2+bx+c=0,若b2﹣4ac<0,则()A.有两个不相等的实数根 B.有实数根C.没有实数根 D.有两个相等的实数根【考点】根的判别式.【分析】根据一元二次方程根的判别式,b2﹣4ac<0方程没有实数根,b2﹣4ac=0,方程有两个相等的实数根,b2﹣4ac>0方程有两个不相等的实数根,即可得出答案.【解答】解:∵方程ax2+bx+c=0,若b2﹣4ac<0,∴方程没有实数根.故选C.【点评】此题主要考查了一元二次方程根的判别式,中考中一元二次方程根的判别式的考查比较多,同学们应熟练掌握.14.(2011秋•新化县校级期中)关于x的方程mx2+(2m+1)x+m=0有两个不相等的实数根,则m的取值范围是()A.m>﹣ B.m<﹣ C.m>4 D.m>﹣且m≠0【考点】根的判别式.【专题】计算题.【分析】先根据关于x的方程mx2+(2m+1)x+m=0有两个不相等的实数根,判定方程为一元二次方程,再根据根的判别式解答.【解答】解:∵关于x的方程mx2+(2m+1)x+m=0有两个不相等的实数根,∴方程为一元二次方程,∴△=(2m+1)2﹣4m•m>0且m≠0,∴4m2+1+4m﹣4m2>0,∴4m>﹣1,∴m>﹣且m≠0.故选D.【点评】本题考查了一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.15.(2011秋•无为县期中)如果k是实数,且不等式(k+1)x>k+1的解集是x<1,那么关于x的方程的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.没有实数根 D.无法确定【考点】根的判别式;解一元一次不等式.【分析】有不等式的解集可求出k的取值范围,进而利用根的判别式判断方程根的情况即可.【解答】解:∵不等式(k+1)x>k+1的解集是x<1,∴k<﹣1,∴关于x的方程为一元二次方程,∵△=b2﹣4ac=(k+1)2﹣4×k×k,=2k+1<0,∴方程没有实数根,故选C【点评】本题考查的是根的判别式,即元二次方程ax2+bx+c=0(a≠0)中,当△<0时,方程无实数根.16.(2011秋•青浦区校级期中)在一元二次方程ax2﹣4x+c=0(a≠0)中,若a、c异号,则方程()A.根的情况无法确定 B.没有实数根C.有两个不相等的实数根 D.有两个相等的实数根【考点】根的判别式.【分析】判断上述方程的根的情况,只要看根的判别式△=b2﹣4ac的值的符号即可.【解答】解:∵若a与c异号,∴△=b2﹣4ac=16﹣4ac>0,∴原方程有两个不相等的实数根.故选:C.【点评】此题主要考查了一元二次方程中根的判别式,总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.17.(2011秋•桑植县校级期中)关于x的方程kx2+2x﹣1=0无实数根,则k的取值范围是()A.k≠0 B.k<﹣1 C.k≤﹣1 D.k=﹣1【考点】根的判别式.【专题】探究型.【分析】先根据于x的方程kx2+2x﹣1=0无实数根得出关于△<0,求出k的取值范围即可.【解答】解:∵关于x的方程kx2+2x﹣1=0无实数根,∴△=4+4k<0,解得k<﹣1.故选B.【点评】本题考查的是根的判别式,即元二次方程ax2+bx+c=0(a≠0)中,当△<0时,方程无实数根.18.(2011秋•江津区校级期中)关于x的一元二次方程(m+1)x2﹣(2m+1)x+m﹣2=0有实数根,则m的取值范围是()A.m>﹣且m≠﹣1 B.m≥﹣且m≠﹣1 C.m≥﹣且m≠﹣1 D.m<﹣且m=﹣1【考点】根的判别式.【专题】计算题.【分析】根据一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac的意义得到m+1≠0,即m≠﹣1,且△≥0,即(2m+1)2﹣4(m+1)(m﹣2)≥0,然后求出两个不等式的公共部分即可.【解答】解:∵关于x的一元二次方程(m+1)x2﹣(2m+1)x+m﹣2=0有实数根,∴m+1≠0,即m≠﹣1,且△≥0,即(2m+1)2﹣4(m+1)(m﹣2)≥0,4m+1+4m+8≥0,解得m≥﹣,∴当m≥﹣且m≠﹣1时,方程有两个实数根.故选C.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.19.(2011秋•无锡校级期中)已知△ABC中,∠C=90°,∠A,∠B,∠C的对边分别为a,b,c,则方程(c+a)x2+2bx+(c﹣a)=0的根的情况为()A.有两个不相等的实数根 B.有两个相等的实数根C.没有实数根 D.无法确定【考点】根的判别式;勾股定理.【分析】先计算△,得△=4(a2+b2﹣c2),再由勾股定理得到△=0,从而判断方程根的情况.【解答】解:∵c+a≠0,∴方程(c+a)x2+2bx+(c﹣a)=0为一元二次方程.则△=4b2﹣4(c+a)(c﹣a)=4b2﹣4c2+4a2=4(a2+b2﹣c2),∵△ABC中,∠C=90°,∠A,∠B,∠C的对边分别为a,b,c,∴a2+b2=c2,∴△=0,则方程(c+a)x2+2bx+(c﹣a)=0有两个相等的实数根.故选B.【点评】本题考查了一元二次方程根的判别式,当△>0,方程有两个不相等的实数根;当△<0,方程没有实数根;当△=0,方程有两个相等的实数根.同时要记住勾股定理.20.(2011秋•青山区校级期中)利用根的判别式判断下列方程根的情况,其中有两个相等实数根的方程是()A.x2+10x+16=O B.x2﹣4x+9=OC.3x2+10x=2x2+8x D.16x2﹣24x+9=O【考点】根的判别式.【专题】计算题.【分析】分别计算四个方程的判别式△=b2﹣4ac,然后根据△的意义分别判断即可.【解答】解:A、△=102﹣4×1×16=36>0,方程有两个不相等的实数根,所以A选项错误;B、△=(4)2﹣4×1×9<0,方程没有实数根,所以B选项错误;C、△=(2)2=4>0,方程有两个相等实数根,所以C选项错误;D、△=(﹣24)2﹣4×16×9=0,方程有两个相等的实数根,所以D选项正确.故选D.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.21.(2011秋•本溪期中)如果关于x的方程(m+2)x2﹣2(m+1)x+m=0有且只有一个实数根,那么关于x的方程(m+2)x2﹣2mx+m﹣1=0的根为()A. B.1或3 C.﹣1或3 D.1或﹣3【考点】根的判别式;解一元二次方程-因式分解法.【专题】计算题.【分析】由关于x的方程(m+2)x2﹣2(m+1)x+m=0有且只有一个实数根,有m+2=0,即m=﹣2,然后把m=﹣2代入关于x的方程(m+2)x2﹣2mx+m﹣1=0,得到4x﹣3=0,解方程即可.【解答】解:∵关于x的方程(m+2)x2﹣2(m+1)x+m=0有且只有一个实数根,∴m+2=0,即m=﹣2,把m=﹣2代入关于x的方程(m+2)x2﹣2mx+m﹣1=0,得到4x﹣3=0,解得x=.故选A.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)和一元一次方程的定义.22.(2011春•濉溪县期末)若关于x的方程(m2﹣1)x2﹣2(m+2)x+1=0有实数根,则m的取值范围是()A. B. C. D.【考点】根的判别式.【专题】计算题.【分析】由于方程有实数根,当方程为一元二次方程时,令△>0,即可求出m的取值范围,要注意,m2﹣1≠0.再令方程为一元一次方程,进行解答.【解答】解:当方程(m2﹣1)x2﹣2(m+2)x+1=0为一元二次方程时,m2﹣1≠0,即m≠±1.∵关于x的方程(m2﹣1)x2﹣2(m+2)x+1=0有实数根,∴△=[﹣2(m﹣2)]2﹣4(m2﹣1)=16m+20≥0,解得m≥﹣;当方程(m2﹣1)x2﹣2(m+2)x+1=0为一元一次方程时,m2﹣1=0且﹣2(m+2)≠0,则m=±1,综上,m≥﹣时方程有实数根.故选B.【点评】本题考查了方程根的情况,要分类讨论,对一元一次方程和一元二次方程分别解答.23.(2011秋•雁江区期末)已知关于x的一元二次方程(a﹣2)2x2+(2a+1)x+1=0,有两个不等实数根,则a的取值范围是()A.a≥ B.a< C.a>且a≠2 D.a>且a≠2【考点】根的判别式.【分析】先根据一元二次方程的定义及根的判别式列出关于a的不等式,求出a的取值范围即可.【解答】解:∵关于x的一元二次方程(a﹣2)2x2+(2a+1)x+1=0,有两个不等实数根,∴,解得a>且a≠2.故选D.【点评】本题考查的是根的判别式,在解答此类问题时要注意结合一元二次方程的定义求解.24.(2011秋•利川市期末)已知关于x的方程﹣x2+2kx+4﹣k2=0,则方程的根的情况是()A.有两不等实根 B.有两相等实根C.无实根 D.有两不等或相等实根【考点】根的判别式.【分析】先把方程整理为x2﹣2kx+k2﹣4=0,然后计算判别式的值得到△=0,然后根据判别式的意义判断方程根的情况.【解答】解:方程整理为x2﹣2kx+k2﹣4=0,△=4k2﹣4(k2﹣4)=16>0,所以方程有两不等实根.故选A.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.25.(2011春•长沙县校级期末)关于方程ax2﹣x+1=0(a为非正数)的根的情况,下列说法错误的是()A.方程一定有实数根 B.方程有可能只有一实数根C.方程可能有两实数根 D.方程可能无实数根【考点】根的判别式;一元一次方程的解.【分析】根据a≤0,分a<0与a=0两种情况进行讨论.【解答】解:①如果a<0,那么方程ax2﹣x+1=0是一元二次方程,∵△=1﹣4a>0,∴方程有两个不相等的实数根;②如果a=0,那么方程ax2﹣x+1=0是一元一次方程,解方程﹣x+1=0,得x=1.综上所述,A、B、C正确,D错误.故选D.【点评】本题主要考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.26.(2011秋•东台市校级期末)已知一元二次方程ax2+bx+c=0(a不等于0)满足a+b+c=0,那么我们称这个方程为凤凰方程,若该方程有两个相等的实数根,则()A.a=c B.a=b C.b=c D.a=b=c【考点】根的判别式;一元二次方程的解.【专题】计算题.【分析】由方程有两个相等的实数根,得到根的判别式等于0,再由a+b+c=0,把表示出b代入根的判别式中,变形后即可得到a=c.【解答】解:∵方程有两个相等实数根,且a+b+c=0,∴b2﹣4ac=0,b=﹣a﹣c,将b=﹣a﹣c代入得:a2+2ac+c2﹣4ac=(a﹣c)2=0,则a=c.故选A【点评】此题考查了根的判别式,以及一元二次方程的解,一元二次方程中根的判别式大于0,方程有两个不相等的实数根;根的判别式等于0,方程有两个相等的实数根;根的判别式小于0,方程无解.27.(2010秋•武汉期末)对于一元二次方程ax2+bx+c=O(a≠0),下列说法:①若a+c=0,方程ax2+bx+c=O必有实数根;②若b2+4ac<0,则

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论