版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省六安市皋城中学2024~2025学年九年级上学期第一次月考数学试卷时间:70分钟满分:120分一、选择题(共10小题,每小题5分)1.下列关系式中,y是x的反比例函数的是()A. B. C. D.2.抛物线y=x2+2x+m﹣1与x轴有两个不同的交点,则m的取值范围是()A.m<2 B.m>2 C.0<m≤2 D.m<﹣23.已知点在反比例函数的图象上,则的大小关系是()A. B. C. D.4.点在函数图像上,下列说法中错误的是()A.它的图象分布在二、四象限 B.当时,的值随的增大而增大C.当时,的值随的增大而减小 D.它的图象过点5.一次函数与反比例函数)在同一坐标系中的图象可能是()A. B. C. D.6.已知二次函数,当时,的最小值为,则的值为()A.12或4 B.或 C.或4 D.或47.如图,双曲线与直线交于点,,并且点坐标为,点的纵坐标为.根据图象信息可得关于的不等式的解集为()A.或 B.C. D.或8.菱形的面积为2,其对角线分别为x、y,则y与x的图象大致().A. B.C. D.9.反比例函数和在第一象限内的图象如图所示,点在的图象上,过点作轴于点,交的图象于点轴于点,交的图象于点.当点的横坐标逐渐变大时,四边形的面积()A.逐渐变大 B.逐渐变小 C.不变 D.无法确定10.如图,过点C(1,2)分别作x轴、y轴的平行线,交直线y=-x+6于A,B两点,若反比例函数(x>0)的图像与△ABC有公共点,则k的取值范围是()A2≤k≤8 B.2≤k≤9 C.2≤k≤5 D.5≤k≤8二、填空题(共5小题,每小题5分)11.在平面直角坐标系中,正比例函数图象与反比例函数的图象相交于A,B两点,其中点A的坐标为,那么点B的坐标为______.12.抛物线经过点、两点,则关于的一元二次方程的解是___________13.如图,正方形的中心在直角坐标系的原点,正方形的边与坐标轴平行,点是正方形与反比例函数图象的一个交点.已知图中阴影部分的面积等于18,则这个反比例函数的表达式为________.14.如图,抛物线的顶点为,对称轴与轴交于点,当以为对角线的正方形的另外两个顶点、恰好在抛物线上时,我们把这样的抛物线称为“美丽抛物线”,正方形为它的内接正方形.(1)当抛物线是“美丽抛物线”时,则________.(2)若抛物线是“美丽抛物线”,则,之间的数量关系为________.三、解答题(8分+8分+10分+12分+12分)15.已知函数为反比例函数.(1)求k的值;(2)求出时,y取值范围.16.如图,中,顶点的坐标是,轴,交轴于点,顶点的纵坐标是,的面积是.反比例函数的图象经过点和,求反比例函数的表达式.17.如图,一次函数的图象与反比例函数的图象交于点,,且一次函数与x轴,y轴分别交于点C,D.(1)求反比例函数和一次函数的表达式;(2)在第三象限的反比例函数图象上有一点P,使得,求点P的坐标.18.某文具店购进一批纪念册,每本进价为元,出于营销考虑,要求每本纪念册的售价不低于元且不高于元,在销售过程中发现该纪念册每周的销售量本)与每本纪念册的售价元)之间满足一次函数关系;当销售单价为元时,销售量为本;当销售单价为元时,销售量为本.(1)求出与的函数关系式;(2)设该文具店每周销售这种纪念册所获得的利润为元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?19.如图1所示的某种发石车是古代一种远程攻击的武器,将发石车置于山坡底部处,以点为原点,水平方向为轴方向,建立如图所示的平面直角坐标系,将发射出去的石块当作一个点看,其飞行路线可以近似看作抛物线的一部分,山坡上有一堵防御墙,其竖直截面为,墙宽米,与轴平行,点与点的水平距离为米、垂直距离为米.(1)若发射石块在空中飞行的最大高度为10米,①求抛物线解析式;②试通过计算说明石块能否飞越防御墙;(2)若要使石块恰好落在防御墙顶部上(包括端点、),求的取值范围,
安徽省六安市皋城中学2024~2025学年九年级上学期第一次月考数学试卷时间:70分钟满分:120分一、选择题(共10小题,每小题5分)1.下列关系式中,y是x的反比例函数的是()A. B. C. D.【答案】D【解析】【分析】本题主要考查了反比例函数的定义,熟知一般地,形如,其中是常数的函数叫做反比例函数是解题的关键.根据反比例函数的定义解答即可.【详解】解:A、不符合的形式,不是反比例函数,不符合题意;B、不符合的形式,不是反比例函数,不符合题意;C、不符合的形式,不是反比例函数,不符合题意;D、可化为,符合的形式,是反比例函数,符合题意,故选:D.2.抛物线y=x2+2x+m﹣1与x轴有两个不同的交点,则m的取值范围是()A.m<2 B.m>2 C.0<m≤2 D.m<﹣2【答案】A【解析】【详解】试题分析:由题意知抛物线y=x2+2x+m﹣1与x轴有两个交点,所以△=b2﹣4ac>0,即4﹣4m+4>0,解得m<2,故答案选A.考点:抛物线与x轴的交点.3.已知点在反比例函数的图象上,则的大小关系是()A. B. C. D.【答案】C【解析】【分析】本题考查了反比例函数图象上点的坐标特征,反比例函数的性质,根据反比例函数性质,反比例函数反比例函数图像分布在二、四象限,在每一个象限y随x的增大而增大,进行判断即可.【详解】解:,,反比例函数图像分布在二、四象限,在每一个象限y随x的增大而增大,,,,,.故选:C.4.点在函数图像上,下列说法中错误的是()A.它的图象分布在二、四象限 B.当时,的值随的增大而增大C.当时,的值随的增大而减小 D.它的图象过点【答案】C【解析】【分析】此题主要考查了反比例函数图象性质,先把点代入,求得,根据反比例函数的性质:当,双曲线的两支分别位于第二、第四象限,在每一象限内随的增大而增大,图象既是轴对称图形又是中心对称图形进行判断即可.【详解】解:把点代入,得,解得:,∴,A、∵,∴的图象分布在二、四象限,原说法正确,故此选项不符合题意;B、∵,∴当时,的值随的增大而增大,原说法正确,故此选项不符合题意;C、∵,∴当时,的值随的增大而增大,原说法错误,故此选项符合题意;D、∵把代入,得,∴它的图象过点,原说法正确,故此选项不符合题意;故选:C.5.一次函数与反比例函数)在同一坐标系中的图象可能是()A. B. C. D.【答案】A【解析】【分析】本题考查反比例函数和一次函数的图象与性质,熟练掌握根据待定系数判断图象在坐标系中的位置是解题的关键.分别根据和讨论直线和双曲线在坐标系中的位置即可得.【详解】解:当时,直线经过第一、三、四象限,双曲线经过第一、三象限,故A符合题意;当时,直线经过第一、二、四象限,双曲线经过第二、四象限,没有符合题意的.故选:A.6.已知二次函数,当时,的最小值为,则的值为()A.12或4 B.或 C.或4 D.或4【答案】D【解析】【分析】分两种情况讨论,并且利用二次函数的性质即可解答.【详解】解:二次函数的对称轴为:直线,(1)当时,当时,随的增大而减小,当,随的增大而增大,当时,取得最小值,,;(2)当时,当时,随的增大而增大,当,随的增大而减小,当时,取得最小值,,.故选:D.【点睛】本题主要考查二次函数的性质,掌握二次函数的性质以及分类讨论思想是解题的关键.7.如图,双曲线与直线交于点,,并且点的坐标为,点的纵坐标为.根据图象信息可得关于的不等式的解集为()A.或 B.C. D.或【答案】A【解析】【分析】本题主要考查了反比例函数与一次函数交点问题,首先把M点代入中,求出反比例函数解析式,再利用反比例函数解析式求出N点坐标,求关于x的不等式的解就是看一次函数图象在反比例函数图象上方时点的横坐标的集合.【详解】解:∵在反比例函数图象上,∴,∴反比例函数解析式为:,∵N也在反比例函数图象上,点N的纵坐标为.∴,∴,∴关于x不等式的解为或,故选:A.8.菱形的面积为2,其对角线分别为x、y,则y与x的图象大致().A. B.C. D.【答案】C【解析】【分析】先根据菱形的面积公式,得出x、y的函数关系,再根据x的取值范围选出答案.【详解】∵菱形的面积S=∴,即y=其中,x>0故选:C【点睛】本题考查菱形面积公式的应用,注意在求解出x、y的关系后,还需要判断x的取值范围.9.反比例函数和在第一象限内的图象如图所示,点在的图象上,过点作轴于点,交的图象于点轴于点,交的图象于点.当点的横坐标逐渐变大时,四边形的面积()A.逐渐变大 B.逐渐变小 C.不变 D.无法确定【答案】C【解析】【分析】此题主要考查了反比例函数中k的几何意义.根据反比例函数的图象和性质,特别是根据反比例函数k的几何意义,求得与的面积相等且都等于1,即可得出正确答案.【详解】解:由于点C和点D均在同一个反比例函数的图象上,∴,∴与的面积相等,∵矩形的面积是k、而、的面积为定值1,则四边形的面积只与k有关,∴四边形面积不会发生变化,故选:C.10.如图,过点C(1,2)分别作x轴、y轴的平行线,交直线y=-x+6于A,B两点,若反比例函数(x>0)的图像与△ABC有公共点,则k的取值范围是()A.2≤k≤8 B.2≤k≤9 C.2≤k≤5 D.5≤k≤8【答案】B【解析】【详解】∵点C(1,2),BC∥y轴,AC∥x轴,∴当x=1时,y=−1+6=5,当y=2时,−x+6=2,解得x=4,∴点A.
B的坐标分别为A(4,2),B(1,5),根据反比例函数系数的几何意义,当反比例函数与点C相交时,k=1×2=2最小,设反比例函数与线段AB相交于点(x,−x+6)时k值最大,则k=x(−x+6)=−x²+6x=−(x−3)²+9,∵1⩽x⩽4,∴当x=3时,k值最大,此时交点坐标为(3,3),因此,k的取值范围是2⩽k⩽9.故选B.点睛:本题考查了反比例函数系数的几何意义,二次函数的最值问题,本题看似简单但不容易入手解答,判断出最大最小值的取值情况并考虑到用二次函数的最值问题解答是解题的关键.二、填空题(共5小题,每小题5分)11.在平面直角坐标系中,正比例函数的图象与反比例函数的图象相交于A,B两点,其中点A的坐标为,那么点B的坐标为______.【答案】【解析】【分析】本题主要考查了反比例函数图象的中心对称性.反比例函数的图象是中心对称图形,则经过原点的直线的两个交点一定关于原点对称,据此求解即可.【详解】解:根据题意,知点A与B关于原点对称,∵点A的坐标是,∴B点的坐标为.故答案为:.12.抛物线经过点、两点,则关于的一元二次方程的解是___________【答案】,.【解析】【分析】由题意可得关于a、b、c的方程组,解方程组用含a的式子表示出b、c,然后把b、c代入到一元二次方程组进行求解即可得.【详解】依题意,得:,解得:,所以,关于x的一元二次方程a(x-1)2+c=b-bx为:,即:,化为:,解得:,,故答案为,.【点睛】本题考查了抛物线上点坐标特征,解方程组,解一元二次方程等,综合性较强,正确把握抛物线上的点的坐标一定满足抛物线的解析式,得到用含a的式子表示出b和c是解题的关键.13.如图,正方形的中心在直角坐标系的原点,正方形的边与坐标轴平行,点是正方形与反比例函数图象的一个交点.已知图中阴影部分的面积等于18,则这个反比例函数的表达式为________.【答案】【解析】【分析】如图,利用正方形的性质得四边形AEOF为正方形,则由点P(3a,a)可得点A的坐标为(3a,3a),根据反比例函数的图象关于原点中心对称可得正方形AEOF的面积=阴影部分的面积=18,则3a•3a=18,解得或(舍去),所以P(,),然后根据反比例函数图象的坐标特征可求出k的值.【详解】解:如图,∵正方形ABCD的中心在原点O,且AD∥x轴,∴四边形AEOF为正方形,∵点P(3a,a),∴点A的坐标为(3a,3a),∵反比例函数的图象以及正方形都关于原点中心对称,∴正方形AEOF的面积=阴影部分的面积=18,∴3a•3a=18,解得或(舍去),∴P(,),∴.∴这个反比例函数的解析式为:,故答案为:.【点睛】本题考查了反比例函数比例系数k的几何意义:在反比例函数图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.也考查了反比例函数图象的对称性与正方形的性质.14.如图,抛物线的顶点为,对称轴与轴交于点,当以为对角线的正方形的另外两个顶点、恰好在抛物线上时,我们把这样的抛物线称为“美丽抛物线”,正方形为它的内接正方形.(1)当抛物线是“美丽抛物线”时,则________.(2)若抛物线是“美丽抛物线”,则,之间的数量关系为________.【答案】①.②.【解析】【分析】本题考查了抛物线图像的性质,解一元二次方程,掌握抛物线的轴对称性,利用其对称性,求相应点的坐标是解答本题的关键.(1)由题意知,抛物线的对称轴,顶点,得到,进而可以得到点,的坐标,代入,得到.(2)由题意知,抛物线的对称轴,顶点,得到,进而可以得到点,的坐标,代入,得到.【详解】解:(1)抛物线中,令,则,对称轴,顶点对称轴与轴交于点的坐标是,,正方形中,,是对角线,由题意知,点,关于对称轴轴对称,,或,将代入抛物线中,得,解得.故答案为(2)抛物线中,令,则,对称轴,顶点对称轴与轴交于点的坐标是,,正方形中,,是对角线,由题意知,点,关于对称轴轴对称,,或,将代入抛物线中,得,解得,(舍去);故答案为.三、解答题(8分+8分+10分+12分+12分)15.已知函数为反比例函数.(1)求k的值;(2)求出时,y的取值范围.【答案】(1)(2).【解析】【分析】本题考查的是反比例函数的定义及反比例函数的性质,根据题意求出的值是解题的关键.(1)根据反比例函数的定义得出关于的方程和不等式,求出的值即可;(2)根据(1)中的值得出反比例函数的解析式,再求出和时的值即可.【小问1详解】解:函数为反比例函数且,;【小问2详解】解:由(1)知,,反比例函数的解析式为,当时,;当时,,时,.16.如图,中,顶点的坐标是,轴,交轴于点,顶点的纵坐标是,的面积是.反比例函数的图象经过点和,求反比例函数的表达式.【答案】.【解析】【分析】根据题意得出AE=6,结合平行四边形的面积得出AD=BC=4,继而知点D坐标,从而得出反比例函数解析式;【详解】解:顶点的坐标是,顶点的纵坐标是,,又的面积是,,则,反比例函数解析式为.【点睛】本题主要考查待定系数法求反比例函数解析式,解题的关键是掌握平行四边形的面积公式及待定系数法求反比例函数的能力.17.如图,一次函数的图象与反比例函数的图象交于点,,且一次函数与x轴,y轴分别交于点C,D.(1)求反比例函数和一次函数的表达式;(2)在第三象限的反比例函数图象上有一点P,使得,求点P的坐标.【答案】(1)反比例函数表达式为,一次函数表达式为(2)【解析】【分析】本题考查了待定系数法求解析式,一次函数与反比例函数的交点问题,掌握交点坐标满足两个函数解析式是解题关键.(1)待定系数法求出两个函数解析式即可;(2)根据一次函数解析式先求出点C、D坐标,再设点P点坐标为利用三角形面积公式计算出m值即可得到点P的坐标.【小问1详解】解:∵一次函数的图象与反比例函数图象交于点,,∴,∴,∴反比例函数解析式为,∵一次函数图象过,,∴,解得,∴一次函数解析式为;【小问2详解】在一次函数中,当时,;当时,,∴∴,∴,设点P的坐标为,∴,解得,∴点.18.某文具店购进一批纪念册,每本进价为元,出于营销考虑,要求每本纪念册的售价不低于元且不高于元,在销售过程中发现该纪念册每周的销售量本)与每本纪念册的售价元)之间满足一次函数关系;当销售单价为元时,销售量为本;当销售单价为元时,销售量为本.(1)求出与的函数关系式;(2)设该文具店每周销售这种纪念册所获得的利润为元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?【答案】(1)(2);【解析】【分析】(1)设与的关系式为,根据题意,待
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年厨师等级考试题库及操作指南
- 2026年编程基础操作模拟题编程语言Python
- 2026年工业机器人设计与应用工程师技能竞赛题
- 2026年NDT无损检测技术实操技能考核题
- 2026年计算机操作员等级考试试题库
- 2026年税务筹划师专业能力提升试题集
- 2026年生物遗传学基础知识及实验技能测试题
- 2026年资深HR专业人士技能鉴定题库及详解
- 2026年工程项目管理知识测试题库
- 2026年英语听力理解与口语表达能力测试题
- 日本风格家居空间设计解析
- 商铺应急预案范本(3篇)
- 浅析国有参股企业股权管理优化方案构建与实施
- 住院患者非计划性拔管循证预防与安全管理体系构建
- 后勤工作会议讲话稿
- DB11∕T 1831-2021 装配式建筑评价标准
- 2024-2025学年度陕西能源职业技术学院单招《职业适应性测试》考试历年机考真题集(易错题)附答案详解
- 2025-2026学年度武汉市部分学校高三年级九月调研考试 数学试卷(含答案解析)
- 2025年护士长竞聘上岗理论测试题(附答案)
- 小区楼道物业清理方案(3篇)
- 保安机具管理办法
评论
0/150
提交评论