版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第4章第6节一、多元函数的极值与最值二、条件极值多元函数的极值一、多元函数的极值与最值
定义:
若函数则称函数在该点取得极大值例如:在点(0,0)有极小值;在点(0,0)有极大值;在点(0,0)无极值.极大值和极小值统称为极值,使函数取得极值的点称为极值点.的某邻域内有(极小值).说明:
使偏导数都为0的点称为驻点
.例如,定理1(必要条件)函数偏导数,证:据一元函数极值的必要条件可知定理结论成立.取得极值,取得极值取得极值
但驻点不一定是极值点.有驻点(0,0),但在该点不取极值.且在该点取得极值,则有存在故时,具有极值定理2
(充分条件)的某邻域内具有一阶和二阶连续偏导数,令则:1)当A<0时取极大值;A>0时取极小值.2)当3)当时,没有极值.时,不能确定,需另行讨论.若函数且例1.求函数解:
第一步求驻点.得驻点:(1,0),(1,2),(–3,0),(–3,2).第二步判别.在点(1,0)处为极小值;解方程组的极值.求二阶偏导数在点(3,0)处不是极值;在点(3,2)处为极大值.在点(1,2)处不是极值;例2.讨论函数及是否取得极值.解:
显然(0,0)都是它们的驻点,在(0,0)点邻域内的取值,因此z(0,0)不是极值.因此为极小值.正负0在点(0,0)并且在(0,0)都有可能为最值应用问题函数f
在闭域上连续函数f
在闭域上可达到最值
最值可疑点驻点边界上的最值点特别,当区域内部最值存在,且只有一个极值点P时,为极小值为最小值(大)(大)依据例3.解:设水箱长,宽分别为x,ym
,则高为则水箱所用材料的面积为令得驻点某厂要用铁板做一个体积为2根据实际问题可知最小值在定义域内应存在,的有盖长方体水箱,问当长、宽、高各取怎样的尺寸时,才能使用料最省?因此可断定此唯一驻点就是最小值点.即当长、宽均为高为时,水箱所用材料最省.二、条件极值极值问题无条件极值:条件极值:条件极值的求法:方法1代入法.求一元函数的无条件极值问题对自变量只有定义域限制对自变量除定义域限制外,还有其他条件限制例如,转化方法2拉格朗日乘数法.分析:如方法1所述,则问题等价于一元函数可确定隐函数的极故极值点必满足记例如,值问题,故有引入辅助函数辅助函数F
称为拉格朗日(Lagrange)函数.利用拉格极值点必满足则极值点满足:朗日函数求极值的方法称为拉格朗日乘数法.推广拉格朗日乘数法可推广到多个自变量和多个约束条件的情形.设解方程组可得到条件极值的可疑点.例如,
求函数下的极值.在条件例4.要设计一个容量为则问题为求x,y,令解方程组解:
设x,y,z分别表示长、宽、高,下水箱表面积最小.z使在条件水箱长、宽、高等于多少时所用材料最省?的长方体开口水箱,试问得唯一驻点由题意可知合理的设计是存在的,长、宽为高的2倍时,所用材料最省.因此,当高为思考:1)当水箱封闭时,长、宽、高的尺寸如何?提示:
利用对称性可知,2)当开口水箱底部的造价为侧面的二倍时,欲使造价
应如何设拉格朗日函数?长、宽、高尺寸如何?提示:长、宽、高尺寸相等.最省,内容小结1.函数的极值问题第一步利用必要条件在定义域内找驻点.即解方程组第二步利用充分条件判别驻点是否为极值点.2.函数的条件极值问题(1)简单问题用代入法如对二元函数(2)一般问题用拉格朗日乘数法设拉格朗日函数如求二元函数下的极值,解方程组
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 战乱地区应急策略
- 成本管理的成本控制策略
- 广东省江门市2024-2025学年高一上学期语文1月期末考试试卷(含答案)
- 慈善组织合规协议
- 眼科病历编写规定
- 慢阻肺急性加重患序贯通气策略
- 2026年新能源电池生产协议
- 加急财务审计合同协议
- POS机刷卡服务协议范本
- 车辆资源池管理协议书
- 猪场产房技术员工作总结
- 宁德时代shl测试题库以及答案解析
- 公众号解封申请书
- 2026届广西南宁市数学九上期末学业水平测试试题含解析
- 酒店运营经理年终总结
- 膀胱恶性肿瘤课件
- 2025年短剧出海营销白皮书-Meta
- 高中物理化学生物专题复习资料
- 口腔门诊院感管理规范
- 学堂在线 雨课堂 学堂云 信息素养-学术研究的必修课 章节测试答案
- 矿山三级安全教育培训
评论
0/150
提交评论