专题105离散型随机变量的分布列2022年高考数学一轮复习(新高考浙江)(讲)原卷版_第1页
专题105离散型随机变量的分布列2022年高考数学一轮复习(新高考浙江)(讲)原卷版_第2页
专题105离散型随机变量的分布列2022年高考数学一轮复习(新高考浙江)(讲)原卷版_第3页
专题105离散型随机变量的分布列2022年高考数学一轮复习(新高考浙江)(讲)原卷版_第4页
专题105离散型随机变量的分布列2022年高考数学一轮复习(新高考浙江)(讲)原卷版_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022年高考数学一轮复习讲练测(新高考·浙江)第十章计数原理与古典概率专题10.5离散型随机变量的分布列(讲)【考试要求】1.理解取有限个值的离散型随机变量及其分布列的概念,理解两点分布,理解n次独立重复试验的模型及二项分布,并能进行简单的应用。2.理解随机变量的均值、方差的概念,会计算取有限个值的简单离散型随机变量的均值、方差,并能解决简单的实际问题.【高考预测】(1)考查取有限个值的离散型随机变量及其分布列的概念及其性质;(2)考查两点分布、n次独立重复试验的模型及其应用.(3)离散型随机变量的分布列及其概率分布是高考命题的热点,与离散型随机变量的数字特征结合命题是主要命题方式.【知识与素养】知识点一.离散型随机变量及其分布列1.离散型随机变量的分布列(1)随机变量如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量,随机变量常用字母X,Y,ξ,η等表示.(2)离散型随机变量对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.随机变量的线性关系:若是随机变量,,其中是常数,则也是随机变量.2.分布列的两个性质①,;②.3.分布列性质的两个作用(1)利用分布列中各事件概率之和为1可求参数的值.(2)随机变量ξ所取的值分别对应的事件是两两互斥的,利用这一点可以求相关事件的概率.【例1】(2021·全国·高二课时练习)已知随机变量ξ只能取三个值x1,x2,x3,其概率依次成等差数列,则该等差数列公差的取值范围是()A. B.C.[-3,3] D.[0,1]知识点二.常见离散型随机变量的分布列(1)两点分布:若随机变量服从两点分布,即其分布列为01其中,则称离散型随机变量服从参数为的两点分布.其中称为成功概率.(2)设离散型随机变量可能取得值为,,…,,…,取每一个值()的概率为,则称表…………为随机变量X的概率分布列,简称X的分布列.有时为了表达简单,也用等式,表示的分布列.【例2】(2021·湖南·高考真题)端午节吃粽子是我国的传统习俗.设一盘中装有6个粽子,其中肉粽1个,蛋黄粽2个,豆沙粽3个,这三种粽子的外观完全相同,从中任意选取2个.(1)用表示取到的豆沙粽的个数,求的分布列;(2)求选取的2个中至少有1个豆沙粽的概率.【重点难点突破】考点一:离散型随机变量分布列的性质【典例1】(2021·全国·高二单元测试)若离散型随机变量的分布列为X01P4a-13a2+a则a等于().A. B. C. D.1【典例2】(2020·陕西高二期末(理))离散型随机变量的分布列为下表,则常数的值为()01A. B. C.或 D.以上都不对【典例3】(2021·全国·高二课时练习)若随机变量X的分布列如下表所示:X0123Pab则a2+b2的最小值为________.【规律方法】离散型随机变量的分布列的性质的应用(1)利用“总概率之和为1”可以求相关参数的取值范围或值;(2)利用“离散型随机变量在一范围内的概率等于它取这个范围内各个值的概率之和”求某些特定事件的概率;(3)可以根据性质判断所得分布列结果是否正确.【变式探究】1.(2021·河南·高二期末(理))若随机变量的分布列如下表,则的最大值是()A. B. C. D.2.(2020·防城港市防城中学高二期中(理))袋中装有一些大小相同的球,其中标号为号的球个,标号为号的球个,标号为号的球个,,标号为号的球个.现从袋中任取一球,所得号数为随机变量,若,则______.3.(2020·广东高二期末)设随机变量X的分布列为P(X=)=ak(k=1,2,3,4),a为常数,则()A.a= B.P(X>)= C.P(X<4a)= D.E(X)=【特别提醒】1.对于分布列易忽视其性质及,其作用可用于检验所求离散型随机变量的分布列是否正确.2.确定离散型随机变量的取值时,易忽视各个可能取值表示的事件是彼此互斥的.3.利用分布列中各概率之和为1可求参数的值,此时要注意检验,以保证每个概率值均为非负数.考点二:两点分布【典例4】(2021·全国·高二单元测试)若随机变量X的分布列如下,则常数c=________.X01P9c2-c3-8c【变式探究】(2021·全国·高二课时练习)已知X服从参数为0.3的两点分布.(1)求;(2)若,写出Y的分布列.考点三:离散型随机变量分布列的求法【典例5】(2021·全国·高二课时练习)从装有6个白球和4个红球的口袋中任取1个球,用X表示取得的白球数,求X的分布列.【典例6】(2021·全国·高二课时练习)抛一枚均匀的硬币2次,设正面朝上的次数为X.(1)说明表示的是什么事件,并求出;(2)求X的分布列.【总结提升】1.求分布列的三种方法(1)由统计数据得到离散型随机变量的分布列;(1)可设出随机变量Y,并确定随机变量的所有可能取值作为第一行数据;(2)由统计数据利用事件发生的频率近似地表示该事件的概率作为第二行数据.由统计数据得到分布列可帮助我们更好理解分布列的作用和意义.(2)由古典概型求出离散型随机变量的分布列;求离散型随机变量的分布列,首先要根据具体情况确定X的取值情况,然后利用排列、组合与概率知识求出X取各个值的概率.2.求离散型随机变量分布列的步骤(1)找出随机变量X的所有可能取值xi(i=1,2,3,…,n);(2)求出各取值的概率P(X=xi)=pi;(3)列成表格并用分布列的性质检验所求的分布列或某事件的概率是否正确.【变式探究】【总结提升】1.解答离散型随机变量的分布列及相关问题的一般思路(1)明确随机变量可能取哪些值.(2)结合事件特点选取恰当的计算方法计算这些可能取值的概率值.(3)根据分布列和期望、方差公式求解.注意解题中要善于透过问题的实际背景发现其中的数学规律,以便使用我们掌握的离散型随机变量及其分布列的知识来解决实际问题.2.离散型随机变量分布列的求解步骤(1)明取值:明确随机变量的可能取值有哪些,且每一个取值所表示的意义.(2)求概率:要弄清楚随机变量的概率类型,利用相关公式求出变量所对应的概率.(3)画表格:按规范要求形式写出分布列.(4)做检验:利用分布列的性质检验分布列是否正确【学科素养提升】分类与整合思想1.分类整合思想的含义:分类与整合思想是将一个较复杂的数学问题分解(或分割)成若干个基础性问题,通过对基础性问题的解答来实现解决原问题的思想策略.对问题实行分类与整合,分类标准等于增加一个已知条件,实现了有效增设,将大问题(或综合性问题)分解为小问题(或基础性问题),优化解题思路,降低问题难度;分类研究后还要对讨论结果进行整合.2.分类与整合思想在解题中的应用(1)由数学概念引起的分类.有的概念本身是分类的,如绝对值、直线斜率、指数函数、对数函数等.(2)由性质、定理、公式的限制引起的分类讨论.有的定理、公式、性质是分类给出的,在不同的条件下结论不一致,如等比数列的前n项和公式、函数的单调性等.(3)由数学运算和字母参数变化引起的分类.如除法运算中除数不为零,偶次方根为非负,对数真数与底数的限制,指数运算中底数的要求,不等式两边同乘以一个正数、负数,三角函数的定义域等.(4)由图形的不确定性引起的分类讨论.有的图形类型、位置需要分类:如角的终边所在的象限;点、线、面的位置关系等.3.简化分类讨论的策略:(1)消去参数;(2)整体换元;(3)变更主元;(4)考虑反面;(5)整体变形;(6)数形结合;(7)缩小范围等.4.分类讨论遵循的原则是:不遗漏、不重复,科学地划分,分清主次,不越级讨论.5.解题时把好“四关”.(1)要深刻理解基本知识与基本原理,把好“基础关”;(2)要找准划分标准,把好“分类关”;(3)要保证条理分明,层次清晰,把好“逻辑关”;(4)要注意对照题中的限制条件或隐含信息,合理取舍,把好“检验关”.【典例1】(2021·全国·高二单元测试)某市高考模拟考试数学试卷解答题的网上评卷采用“双评+仲裁”的方式:两名老师独立评分,称为一评和二评,当两者所评分数之差的绝对值小于或等于1分时,取两者平均分为该题得分;当两者所评分数之差的绝对值大于1分时,再由第三位老师评分,称之为仲裁,取仲裁分数和一、二评中与之接近的分数的平均分为该题得分;当一、二评分数和仲裁分数差值的绝对值相同时,取仲裁分数和一、二评中较高的分数的平均分为该题得分.有的学生考试中会做的题目答完后却得不了满分,原因多为答题不规范,比如:语言不规范、缺少必要文字说明、卷面字迹不清、得分要点缺失等等,把这样的解答称为“缺憾解答”.该市教育研训部门通

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论