安徽省铜陵市浮山中学等重点名校2025年高二数学第二学期期末预测试题含解析_第1页
安徽省铜陵市浮山中学等重点名校2025年高二数学第二学期期末预测试题含解析_第2页
安徽省铜陵市浮山中学等重点名校2025年高二数学第二学期期末预测试题含解析_第3页
安徽省铜陵市浮山中学等重点名校2025年高二数学第二学期期末预测试题含解析_第4页
安徽省铜陵市浮山中学等重点名校2025年高二数学第二学期期末预测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省铜陵市浮山中学等重点名校2025年高二数学第二学期期末预测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在的展开式中,的系数是()A. B. C.5 D.402.某大学中文系共有本科生5000人,期中一、二、三、四年级的学生比为5:4:3:1,要用分层抽样的方法从该系所有本科生中抽取一个容量为260的样本,则应抽二年级的学生A.100人 B.60人 C.80人 D.20人3.函数在上单调递减,且是偶函数,若,则的取值范围是()A.(2,+∞) B.(﹣∞,1)∪(2,+∞)C.(1,2) D.(﹣∞,1)4.已知,,,则()A.0.6 B.0.7 C.0.8 D.0.95.已知是定义在上的函数,且对任意的都有,,若角满足不等式,则的取值范围是()A. B. C. D.6.设曲线及直线所围成的封闭图形为区域,不等式组所确定的区域为,在区域内随机取一点,则该点恰好在区域内的概率为()A. B. C. D.7.对任意复数,为虚数单位,则下列结论中正确的是()A. B. C. D.8.某学习小组有名男生和名女生,现从该小组中先后随机抽取两名同学进行成果展示,则在抽到第个同学是男生的条件下,抽到第个同学也是男生的概率为()A. B. C. D.9.若,满足条件,则的最小值为()A. B. C. D.10.已知随机变量满足,,则下列说法正确的是()A., B.,C., D.,11.一物体做直线运动,其位移s(单位:m)与时间t(单位:s)的关系是s=5t-t2,则该物体在A.-1m/s B.1m12.在一次期中考试中,数学不及格的人数占,语文不及格占,两门都不及格占,若一名学生语文及格,则该生数学不及格的概率为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设,则等于___________.14.已知函数,当时,关于的不等式的解集为__________.15.复数的共轭复数________.(其中为虚数单位)16.在平面直角坐标系中,直线的参数方程为(为参数),圆的参数方程是,(为参数),直线与圆交于两个不同的点、,当点在圆上运动时,面积的最大值为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知矩阵,矩阵B的逆矩阵.(1)求矩阵A的特征值及矩阵B.(2)若先对曲线实施矩阵A对应的变换,再作矩阵B对应的变换,试用一个矩阵来表示这两次变换,并求变换后的结果.18.(12分)已知函数(1)若函数在区间上为减函数,求实数的取值范围(2)当时,不等式恒成立,求实数的取值范围19.(12分)已知函数,.(1)若,求函数的单调递增区间;(2)若函数在区间上单调递增,求实数的取值范围.20.(12分)已知函数(是自然对数的底数).(1)若函数在上单调递减,求的取值范围;(2)当时,记,其中为的导函数.证明:对任意,.21.(12分)已知函数.(1)当时,解不等式;(2)当时,不等式对任意恒成立,求实数的取值范围.22.(10分)在中,角所对的边长分别为,且满足.(Ⅰ)求的大小;(Ⅱ)若的面积为,求的值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】

由二项展开式的通项公式,可直接得出结果.【详解】因为的展开式的通项为,令,则的系数是.故选A本题主要考查二项展开式中指定项的系数,熟记二项式定理即可,属于基础题型.2、C【解析】

要用分层抽样的方法从该系所有本科生中抽取一个容量为260的样本,

则应抽二年级的学生人数为:

(人).

故答案为80.3、B【解析】

根据题意分析的图像关于直线对称,即可得到的单调区间,利用对称性以及单调性即可得到的取值范围。【详解】根据题意,函数满足是偶函数,则函数的图像关于直线对称,若函数在上单调递减,则在上递增,所以要使,则有,变形可得,解可得:或,即的取值范围为;故选:B.本题考查偶函数的性质,以及函数单调性的应用,有一定综合性,属于中档题。4、D【解析】分析:根据随机变量服从正态分布,可知正态曲线的对称轴,利用对称性,即可求得.详解:由题意,

∵随机变量,,

∴故选:D.点睛:本题主要考查正态分布曲线的特点及曲线所表示的意义、函数图象对称性的应用等基础知识,属于基础题.5、A【解析】

构造新函数,由可得为单调减函数,由可得为奇函数,从而解得的取值范围.【详解】解:令因为,所以为R上的单调减函数,又因为,所以,即,即,所以函数为奇函数,故,即为,化简得,即,即,由单调性有,解得,故选A.本题考查了函数性质的综合运用,解题的关键是由题意构造出新函数,研究其性质,从而解题.6、C【解析】分析:求出两个区域的面积,由几何概型概率公式计算可得.详解:由题意,,∴,故选C.点睛:以面积为测度的几何概型问题是几何概型的主要问题,而积分的重要作用正是计算曲边梯形的面积,这类问题巧妙且自然地将新课标新增内容——几何概型与定积分结合在一起,是近几年各地高考及模拟中的热点题型.预计对此类问题的考查会加大力度.7、B【解析】分析:由题可知,然后根据复数的运算性质及基本概念逐一核对四个选项得到正确答案.详解:已知则选项A,,错误.选项B,,正确.选项C,,错误.选项D,,不恒成立,错误.故选B.点睛:本题考查了复数的运算法则、共轭复数的定义、复数模的计算.8、C【解析】

设事件A表示“抽到个同学是男生”,事件B表示“抽到的第个同学也是男生”,则,,由此利用条件概率计算公式能求出在抽到第个同学是男生的条件下,抽到第个同学也是男生的概率.【详解】设事件A表示“抽到个同学是男生”,事件B表示“抽到的第个同学也是男生”,则,,则在抽到第个同学是男生的条件下,抽到第个同学也是男生的概率.故选:C本题考查了条件概率的求法、解题的关键是理解题干,并能分析出问题,属于基础题.9、A【解析】作出约束条件对应的平面区域(阴影部分),由z=2x﹣y,得y=2x﹣z,平移直线y=2x﹣z,由图象可知当直线y=2x﹣z,经过点A时,直线y=2x﹣z的截距最大,此时z最小.由解得A(0,2).此时z的最大值为z=2×0﹣2=﹣2,故选A.点睛:利用线性规划求最值的步骤:(1)在平面直角坐标系内作出可行域.(2)考虑目标函数的几何意义,将目标函数进行变形.常见的类型有截距型(型)、斜率型(型)和距离型(型).(3)确定最优解:根据目标函数的类型,并结合可行域确定最优解.(4)求最值:将最优解代入目标函数即可求出最大值或最小值.10、D【解析】分析:利用期望与方差的性质与公式求解即可.详解:随机变量满足,所以,解得,故选D.点睛:已知随机变量的均值、方差,求的线性函数的均值、方差和标准差,可直接用的均值、方差的性质求解.若随机变量的均值、方差、标准差,则数的均值、方差、标准差.11、A【解析】

先对s求导,然后将t=3代入导数式,可得出该物体在t=3s时的瞬时速度。【详解】对s=5t-t2求导,得s'因此,该物体在t=3s时的瞬时速度为-1m/s,故选:A。本题考查瞬时速度的概念,考查导数与瞬时变化率之间的关系,考查计算能力,属于基础题。12、A【解析】

记“一名学生语文及格”为事件A,“该生数学不及格”为事件B,所求即为,根据条件概率的计算公式,和题设数据,即得解.【详解】记“一名学生语文及格”为事件A,“该生数学不及格”为事件B,所求即为:故选:A本题考查了条件概率的计算,考查了学生概念理解,实际应用,数学运算的能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

根据微积分基本定理可得,再结合函数解析式,根据牛顿莱布尼茨定理计算可得;【详解】解:因为所以故答案为:本题考查利用定积分求曲边形的面积,属于基础题.14、【解析】

首先应用条件将函数解析式化简,通过解析式的形式确定函数的单调性,解出函数值1所对应的自变量,从而将不等式转化为,进一步转化为,求解即可,要注意对数式中真数的条件即可得结果.【详解】当时,是上的增函数,且,所以可以转化为,结合函数的单调性,可以将不等式转化为,解得,从而得答案为.故答案为解决该题的关键是将不等式转化,得到所满足的不等式,从而求得结果,挖掘题中的条件就显得尤为重要.15、【解析】

根据复数除法法则,分子分母同乘分母的共轭复数化简成的形式,再根据共轭复数的定义求出所求即可.【详解】,复数的共轭复数是.故答案为:.本题主要考查复数代数形式的乘除运算、共轭复数的定义,考查基本运算求解能力,属于基础题.16、【解析】

通过将面积转化为以AB为底,P到AB的距离为高即可求解.【详解】直线的直角坐标方程为:,圆的直角坐标方程为:,即圆心为坐标原点,半径为1.因此圆心到直线的距离为,因此,设P到线段AB的高为h,则,因此.本题主要考查直线与圆的位置关系,面积最值问题.意在考查学生的转化能力,计算能力,难度中等.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)矩阵A的特征值为1,2;;(2),【解析】

(1)通过特征多项式即可得到特征值,利用,可计算出矩阵B;(2)首先可计算出的结果,然后设出,变换后的点设成,利用线性变换得到相关关系,从而得到新曲线.【详解】(1)矩阵A的特征多项式,令,则或,故矩阵A的特征值为1,2;设,根据,可得:即,解得,所以矩阵.(2)两次变换后的矩阵,在曲线上任取一点,在变换C的作用下得到,则,即,整理得,可得,即,代入得.本题主要考查线性变换,特征值的计算,意在考查学生的分析能力,计算能力,难度中等.18、(1)(2)【解析】试题分析:(1)由函数求出导数,由区间上为减函数得到恒成立,通过分离参数,求函数最值得到的范围(2)将不等式恒成立转化为求函数最值问题,首先通过函数导数得到单调区间,进而求出最值,在求单调区间时注意对参数分情况讨论试题解析:(1)因为函数在区间上为减函数,所以对恒成立即对恒成立(2)因为当时,不等式恒成立,即恒成立,设,只需即可由①当时,,当时,,函数在上单调递减,故成立②当时,令,因为,所以解得1)当,即时,在区间上,则函数在上单调递增,故在上无最大值,不合题设.2)当时,即时,在区间上;在区间上.函数在上单调递减,在区间单调递增,同样在无最大值,不满足条件.③当时,由,故,,故函数在上单调递减,故成立综上所述,实数的取值范围是考点:1.不等式与函数的转化;2.利用导数求函数的单调性最值19、(1)的单调递增区间为和;(2).【解析】

(1)由求得,求,由可解得函数的增区间;(2)在上恒成立,转化为求函数最值即得.【详解】(1)若,则,,函数的单调递增区间为和;(2)若函数在区间上单调递增,则,则,因,则.本题考查用导数研究函数的单调性.属于基础题.20、(1);(2)见解析.【解析】

(1)求得,由,得,令,利用导数求得,进而求得参数的取值范围;(2)当时,得,令,利用导数求解函数的单调性和最值,得,进而证得结论.【详解】(1)由得,,由得.令,则令的,当时,,递减;当时,,递增.则的取值范围取值范围是.(2)当时,,令,所以令得.因此当时,,单调递增;当时,,单调递减..即又时,故),则,即对任意,本题主要考查导数在函数中的应用,以及不等式的证明,着重考查了转化与化归思想、逻辑推理能力与计算能力,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,求解曲线在某点处的切线方程;(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数;(3)利用导数求函数的最值(极值),解决函数的恒成立与有解问题,同时注意数形结合思想的应用.21、(1);(2)【解析】分析:(1)利用零点分类讨论法解不等式.(2)先利用分段函数求得,再解不等式得到实数的取值范围.详解:(1)当时,由得,故有或或∴或或,∴或,∴的解集为或.(2)当时∴由得∴∴的取值范围为.点睛:(1)本题主要考查绝对值不等式的解法,考查分段函数的最值的求法,考查不等式的恒成立问题,意在考查学生对这些知识的掌握水平和分类讨论的思想方法.(2)解题的关键是求的最小值,这里要利用分段函数的图像求解.22、(1);(2).【解析】分析:(Ⅰ)由已知及正弦定理可得,sinCsinB=sinBcosC,进而利用同角三角函数基本关系式可求tanC=,即可得解C的值;(Ⅱ)由(Ⅰ)利用余弦定理

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论